Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multidimensional scaling
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Metric multidimensional scaling (mMDS) === It is a superset of classical MDS that generalizes the optimization procedure to a variety of loss functions and input matrices of known distances with weights and so on. A useful loss function in this context is called ''stress'', which is often minimized using a procedure called [[stress majorization]]. Metric MDS minimizes the cost function called βstressβ which is a residual sum of squares:<blockquote><math>\text{Stress}_D(x_1,x_2,...,x_n)=\sqrt{\sum_{i\ne j=1,...,n}\bigl(d_{ij}-\|x_i-x_j\|\bigr)^2}.</math></blockquote> Metric scaling uses a power transformation with a user-controlled exponent <math display="inline">p</math>: <math display="inline">d_{ij}^p</math> and <math display="inline">-d_{ij}^{2p}</math> for distance. In classical scaling <math display="inline">p=1.</math> Non-metric scaling is defined by the use of isotonic regression to nonparametrically estimate a transformation of the dissimilarities.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)