Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multilinear map
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== Let's take a trilinear function :<math>g\colon R^2 \times R^2 \times R^2 \to R, </math> where {{math|1=''V<sub>i</sub>'' = ''R''<sup>2</sup>, ''d<sub>i</sub>'' = 2, ''i'' = 1,2,3}}, and {{math|1=''W'' = ''R'', ''d'' = 1}}. A basis for each {{mvar|V<sub>i</sub>}} is <math>\{\textbf{e}_{i1},\ldots,\textbf{e}_{id_i}\} = \{\textbf{e}_{1}, \textbf{e}_{2}\} = \{(1,0), (0,1)\}.</math> Let :<math>g(\textbf{e}_{1i},\textbf{e}_{2j},\textbf{e}_{3k}) = f(\textbf{e}_{i},\textbf{e}_{j},\textbf{e}_{k}) = A_{ijk},</math> where <math>i,j,k \in \{1,2\}</math>. In other words, the constant <math>A_{i j k}</math> is a function value at one of the eight possible triples of basis vectors (since there are two choices for each of the three <math>V_i</math>), namely: :<math> \{\textbf{e}_1, \textbf{e}_1, \textbf{e}_1\}, \{\textbf{e}_1, \textbf{e}_1, \textbf{e}_2\}, \{\textbf{e}_1, \textbf{e}_2, \textbf{e}_1\}, \{\textbf{e}_1, \textbf{e}_2, \textbf{e}_2\}, \{\textbf{e}_2, \textbf{e}_1, \textbf{e}_1\}, \{\textbf{e}_2, \textbf{e}_1, \textbf{e}_2\}, \{\textbf{e}_2, \textbf{e}_2, \textbf{e}_1\}, \{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}. </math> Each vector <math>\textbf{v}_i \in V_i = R^2</math> can be expressed as a linear combination of the basis vectors :<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math> The function value at an arbitrary collection of three vectors <math>\textbf{v}_i \in R^2</math> can be expressed as :<math>g(\textbf{v}_1,\textbf{v}_2, \textbf{v}_3) = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} A_{i j k} v_{1i} v_{2j} v_{3k},</math> or in expanded form as :<math> \begin{align} g((a,b),(c,d)&, (e,f)) = ace \times g(\textbf{e}_1, \textbf{e}_1, \textbf{e}_1) + acf \times g(\textbf{e}_1, \textbf{e}_1, \textbf{e}_2) \\ &+ ade \times g(\textbf{e}_1, \textbf{e}_2, \textbf{e}_1) + adf \times g(\textbf{e}_1, \textbf{e}_2, \textbf{e}_2) + bce \times g(\textbf{e}_2, \textbf{e}_1, \textbf{e}_1) + bcf \times g(\textbf{e}_2, \textbf{e}_1, \textbf{e}_2) \\ &+ bde \times g(\textbf{e}_2, \textbf{e}_2, \textbf{e}_1) + bdf \times g(\textbf{e}_2, \textbf{e}_2, \textbf{e}_2). \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)