Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplication table
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Modern times=== In his 1820 book ''The Philosophy of Arithmetic'',<ref>{{cite book |last=Leslie |first=John |year=1820 |title=The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand |publisher=Abernethy & Walker |location=Edinburgh}}</ref> mathematician [[John Leslie (physicist)|John Leslie]] published a table of "quarter-squares" which could be used, with some additional steps, for multiplication up to 1000 Γ 1000. Leslie also recommended that young pupils memorize the multiplication table up to 50 Γ 50. In 1897, [[August Leopold Crelle]] published ''Calculating tables giving the products of every two numbers from one to one thousand''<ref>{{cite web | url=https://archive.org/details/cu31924032190476/ | title=Calculating tables giving the products of every two numbers from one to one thousand and their application to the multiplication and division of all numbers above one thousand | date=1897 }}</ref> which is a simple multiplication table for products up to 1000 Γ 10000. The illustration below shows a table up to 12 Γ 12, which is a size commonly used nowadays in English-world schools. <div style="margin-left:4em"> {|class="wikitable" style="text-align: right;" !style="width:7.14%"|Γ !style="text-align: right; width:7.14%"|1 !style="text-align: right; width:7.14%"|2 !style="text-align: right; width:7.14%"|3 !style="text-align: right; width:7.14%"|4 !style="text-align: right; width:7.14%"|5 !style="text-align: right; width:7.14%"|6 !style="text-align: right; width:7.14%"|7 !style="text-align: right; width:7.14%"|8 !style="text-align: right; width:7.14%"|9 !style="text-align: right; width:7.14%"|10 !style="text-align: right; width:7.14%"|11 !style="text-align: right; width:7.14%"|12 |- ! style="text-align: right;" |1 | 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 |- ! style="text-align: right;" |2 | 2 || 4 || 6 || 8 || 10 || 12 || 14 || 16 || 18 || 20 || 22 || 24 |- ! style="text-align: right;" |3 | 3 || 6 || 9 || 12 || 15 || 18 || 21|| 24 || 27 || 30 || 33 || 36 |- ! style="text-align: right;" |4 | 4 || 8 || 12 || 16 || 20 || 24 || 28 || 32 || 36 || 40 || 44 || 48 |- ! style="text-align: right;" |5 | 5 || 10 || 15 || 20 || 25 || 30 || 35 || 40 || 45 || 50 || 55 || 60 |- ! style="text-align: right;" |6 | 6 || 12 || 18 || 24 || 30 || 36 || 42 || 48 || 54 || 60 || 66 || 72 |- ! style="text-align: right;" |7 | 7 || 14 || 21 || 28 || 35 || 42 || 49 || 56 || 63 || 70 || 77 || 84 |- ! style="text-align: right;" |8 | 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || 72 || 80 || 88 || 96 |- ! style="text-align: right;" |9 | 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 || 90 || 99 || 108 |- ! style="text-align: right;" |10 | 10 || 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || 100 || 110 || 120 |- ! style="text-align: right;" |11 | 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99 || 110 || 121 || 132 |- ! style="text-align: right;" |12 | 12 || 24 || 36 || 48 || 60 || 72 || 84 || 96 || 108 || 120 || 132 || 144 |} </div> Because multiplication of integers is [[commutative]], many schools use a smaller table as below. Some schools even remove the first column since 1 is the [[multiplicative identity]].{{cn|date=June 2024}} <div style="margin-left:4em"> {|class="wikitable" style="text-align: right;" |- !style="text-align: right;"|1 | 1 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=7, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|2 | 2 || 4 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=6, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;|3 | 3 || 6 || 9 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=5, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|4 | 4 || 8 || 12 || 16 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=4, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|5 | 5 || 10 || 15 || 20 || 25 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=3, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|6 | 6 || 12 || 18 || 24 || 30 || 36 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || colspan=2, style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|7 | 7 || 14 || 21 || 28 || 35 || 42 || 49 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | || style="border-top: solid white 1px; border-right: solid white 1px; border-bottom: solid white 1px; background: white" | |- !style="text-align: right;"|8 | 8 || 16 || 24 || 32 || 40 || 48 || 56 || 64 || style="border-top: solid white 1px; border-right: solid white 1px; background: white" | |- !style="text-align: right;"|9 | 9 || 18 || 27 || 36 || 45 || 54 || 63 || 72 || 81 |- !style="width:7.14%"|Γ !style="text-align: right; width:7.14%"|1 !style="text-align: right; width:7.14%"|2 !style="text-align: right; width:7.14%"|3 !style="text-align: right; width:7.14%"|4 !style="text-align: right; width:7.14%"|5 !style="text-align: right; width:7.14%"|6 !style="text-align: right; width:7.14%"|7 !style="text-align: right; width:7.14%"|8 !style="text-align: right; width:7.14%"|9 |} </div> The traditional [[rote learning]] of multiplication was based on memorization of columns in the table, arranged as follows. <div style="margin-left:4em"> {| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| !style="text-align: right; width:5%"| |- | {{figure space}}0 Γ 0 = 0<br> {{figure space}}1 Γ 0 = 0<br> {{figure space}}2 Γ 0 = 0<br> {{figure space}}3 Γ 0 = 0<br> {{figure space}}4 Γ 0 = 0<br> {{figure space}}5 Γ 0 = 0<br> {{figure space}}6 Γ 0 = 0<br> {{figure space}}7 Γ 0 = 0<br> {{figure space}}8 Γ 0 = 0<br> {{figure space}}9 Γ 0 = 0<br> 10 Γ 0 = 0<br> 11 Γ 0 = 0<br> 12 Γ 0 = 0<br> | {{figure space}}0 Γ 1 = 0<br> {{figure space}}1 Γ 1 = 1<br> {{figure space}}2 Γ 1 = 2<br> {{figure space}}3 Γ 1 = 3<br> {{figure space}}4 Γ 1 = 4<br> {{figure space}}5 Γ 1 = 5<br> {{figure space}}6 Γ 1 = 6<br> {{figure space}}7 Γ 1 = 7<br> {{figure space}}8 Γ 1 = 8<br> {{figure space}}9 Γ 1 = 9<br> 10 Γ 1 = 10<br> 11 Γ 1 = 11<br> 12 Γ 1 = 12<br> | {{figure space}}0 Γ 2 = 0<br> {{figure space}}1 Γ 2 = 2<br> {{figure space}}2 Γ 2 = 4<br> {{figure space}}3 Γ 2 = 6<br> {{figure space}}4 Γ 2 = 8<br> {{figure space}}5 Γ 2 = 10<br> {{figure space}}6 Γ 2 = 12<br> {{figure space}}7 Γ 2 = 14<br> {{figure space}}8 Γ 2 = 16<br> {{figure space}}9 Γ 2 = 18<br> 10 Γ 2 = 20<br> 11 Γ 2 = 22<br> 12 Γ 2 = 24<br> | {{figure space}}0 Γ 3 = 0<br> {{figure space}}1 Γ 3 = 3<br> {{figure space}}2 Γ 3 = 6<br> {{figure space}}3 Γ 3 = 9<br> {{figure space}}4 Γ 3 = 12<br> {{figure space}}5 Γ 3 = 15<br> {{figure space}}6 Γ 3 = 18<br> {{figure space}}7 Γ 3 = 21<br> {{figure space}}8 Γ 3 = 24<br> {{figure space}}9 Γ 3 = 27<br> 10 Γ 3 = 30<br> 11 Γ 3 = 33<br> 12 Γ 3 = 36<br> | {{figure space}}0 Γ 4 = 0<br> {{figure space}}1 Γ 4 = 4<br> {{figure space}}2 Γ 4 = 8<br> {{figure space}}3 Γ 4 = 12<br> {{figure space}}4 Γ 4 = 16<br> {{figure space}}5 Γ 4 = 20<br> {{figure space}}6 Γ 4 = 24<br> {{figure space}}7 Γ 4 = 28<br> {{figure space}}8 Γ 4 = 32<br> {{figure space}}9 Γ 4 = 36<br> 10 Γ 4 = 40<br> 11 Γ 4 = 44<br> 12 Γ 4 = 48<br> |- | {{figure space}}0 Γ 5 = 0<br> {{figure space}}1 Γ 5 = 5<br> {{figure space}}2 Γ 5 = 10<br> {{figure space}}3 Γ 5 = 15<br> {{figure space}}4 Γ 5 = 20<br> {{figure space}}5 Γ 5 = 25<br> {{figure space}}6 Γ 5 = 30<br> {{figure space}}7 Γ 5 = 35<br> {{figure space}}8 Γ 5 = 40<br> {{figure space}}9 Γ 5 = 45<br> 10 Γ 5 = 50<br> 11 Γ 5 = 55<br> 12 Γ 5 = 60<br> | {{figure space}}0 Γ 6 = 0<br> {{figure space}}1 Γ 6 = 6<br> {{figure space}}2 Γ 6 = 12<br> {{figure space}}3 Γ 6 = 18<br> {{figure space}}4 Γ 6 = 24<br> {{figure space}}5 Γ 6 = 30<br> {{figure space}}6 Γ 6 = 36<br> {{figure space}}7 Γ 6 = 42<br> {{figure space}}8 Γ 6 = 48<br> {{figure space}}9 Γ 6 = 54<br> 10 Γ 6 = 60<br> 11 Γ 6 = 66<br> 12 Γ 6 = 72<br> | {{figure space}}0 Γ 7 = 0<br> {{figure space}}1 Γ 7 = 7<br> {{figure space}}2 Γ 7 = 14<br> {{figure space}}3 Γ 7 = 21<br> {{figure space}}4 Γ 7 = 28<br> {{figure space}}5 Γ 7 = 35<br> {{figure space}}6 Γ 7 = 42<br> {{figure space}}7 Γ 7 = 49<br> {{figure space}}8 Γ 7 = 56<br> {{figure space}}9 Γ 7 = 63<br> 10 Γ 7 = 70<br> 11 Γ 7 = 77<br> 12 Γ 7 = 84<br> | {{figure space}}0 Γ 8 = 0<br> {{figure space}}1 Γ 8 = 8<br> {{figure space}}2 Γ 8 = 16<br> {{figure space}}3 Γ 8 = 24<br> {{figure space}}4 Γ 8 = 32<br> {{figure space}}5 Γ 8 = 40<br> {{figure space}}6 Γ 8 = 48<br> {{figure space}}7 Γ 8 = 56<br> {{figure space}}8 Γ 8 = 64<br> {{figure space}}9 Γ 8 = 72<br> 10 Γ 8 = 80<br> 11 Γ 8 = 88<br> 12 Γ 8 = 96<br> | {{figure space}}0 Γ 9 = 0<br> {{figure space}}1 Γ 9 = 9<br> {{figure space}}2 Γ 9 = 18<br> {{figure space}}3 Γ 9 = 27<br> {{figure space}}4 Γ 9 = 36<br> {{figure space}}5 Γ 9 = 45<br> {{figure space}}6 Γ 9 = 54<br> {{figure space}}7 Γ 9 = 63<br> {{figure space}}8 Γ 9 = 72<br> {{figure space}}9 Γ 9 = 81<br> 10 Γ 9 = 90<br> 11 Γ 9 = 99<br> 12 Γ 9 = 108<br> |- | {{figure space}}0 Γ 10 = 0<br> {{figure space}}1 Γ 10 = 10<br> {{figure space}}2 Γ 10 = 20<br> {{figure space}}3 Γ 10 = 30<br> {{figure space}}4 Γ 10 = 40<br> {{figure space}}5 Γ 10 = 50<br> {{figure space}}6 Γ 10 = 60<br> {{figure space}}7 Γ 10 = 70<br> {{figure space}}8 Γ 10 = 80<br> {{figure space}}9 Γ 10 = 90<br> 10 Γ 10 = 100<br> 11 Γ 10 = 110<br> 12 Γ 10 = 120<br> | {{figure space}}0 Γ 11 = 0<br> {{figure space}}1 Γ 11 = 11<br> {{figure space}}2 Γ 11 = 22<br> {{figure space}}3 Γ 11 = 33<br> {{figure space}}4 Γ 11 = 44<br> {{figure space}}5 Γ 11 = 55<br> {{figure space}}6 Γ 11 = 66<br> {{figure space}}7 Γ 11 = 77<br> {{figure space}}8 Γ 11 = 88<br> {{figure space}}9 Γ 11 = 99<br> 10 Γ 11 = 110<br> 11 Γ 11 = 121<br> 12 Γ 11 = 132<br> | {{figure space}}0 Γ 12 = 0<br> {{figure space}}1 Γ 12 = 12<br> {{figure space}}2 Γ 12 = 24<br> {{figure space}}3 Γ 12 = 36<br> {{figure space}}4 Γ 12 = 48<br> {{figure space}}5 Γ 12 = 60<br> {{figure space}}6 Γ 12 = 72<br> {{figure space}}7 Γ 12 = 84<br> {{figure space}}8 Γ 12 = 96<br> {{figure space}}9 Γ 12 = 108<br> 10 Γ 12 = 120<br> 11 Γ 12 = 132<br> 12 Γ 12 = 144<br> | | |} </div> This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Colombia, Bosnia and Herzegovina,{{citation needed|date=December 2016}} instead of the modern grids above.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)