Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplicative function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Convolution == If ''f'' and ''g'' are two multiplicative functions, one defines a new multiplicative function <math>f * g</math>, the ''[[Dirichlet convolution]]'' of ''f'' and ''g'', by <math display="block"> (f \, * \, g)(n) = \sum_{d|n} f(d) \, g \left( \frac{n}{d} \right)</math> where the sum extends over all positive divisors ''d'' of ''n''. With this operation, the set of all multiplicative functions turns into an [[abelian group]]; the [[identity element]] is ''ε''. Convolution is commutative, associative, and distributive over addition. Relations among the multiplicative functions discussed above include: * <math>\mu * 1 = \varepsilon</math> (the [[Möbius inversion formula]]) * <math>(\mu \operatorname{Id}_k) * \operatorname{Id}_k = \varepsilon</math> (generalized Möbius inversion) * <math>\varphi * 1 = \operatorname{Id}</math> * <math>d = 1 * 1</math> * <math>\sigma = \operatorname{Id} * 1 = \varphi * d</math> * <math>\sigma_k = \operatorname{Id}_k * 1</math> * <math>\operatorname{Id} = \varphi * 1 = \sigma * \mu</math> * <math>\operatorname{Id}_k = \sigma_k * \mu</math> The Dirichlet convolution can be defined for general arithmetic functions, and yields a ring structure, the [[Dirichlet ring]]. The [[Dirichlet convolution]] of two multiplicative functions is again multiplicative. A proof of this fact is given by the following expansion for relatively prime <math>a,b \in \mathbb{Z}^{+}</math>: <math display="block">\begin{align} (f \ast g)(ab) & = \sum_{d|ab} f(d) g\left(\frac{ab}{d}\right) \\ &= \sum_{d_1|a} \sum_{d_2|b} f(d_1d_2) g\left(\frac{ab}{d_1d_2}\right) \\ &= \sum_{d_1|a} f(d_1) g\left(\frac{a}{d_1}\right) \times \sum_{d_2|b} f(d_2) g\left(\frac{b}{d_2}\right) \\ &= (f \ast g)(a) \cdot (f \ast g)(b). \end{align} </math> === Dirichlet series for some multiplicative functions === * <math>\sum_{n\ge 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}</math> * <math>\sum_{n\ge 1} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}</math> * <math>\sum_{n\ge 1} \frac{d(n)^2}{n^s} = \frac{\zeta(s)^4}{\zeta(2s)}</math> * <math>\sum_{n\ge 1} \frac{2^{\omega(n)}}{n^s} = \frac{\zeta(s)^2}{\zeta(2s)}</math> More examples are shown in the article on [[Dirichlet series]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)