Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Non-renewable resource
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Nuclear fuels == [[File:Arandis Mine quer.jpg|thumb|[[Rössing uranium mine]] is the longest-running and one of the largest [[open pit]] uranium mines in the world; in 2005 it produced eight percent of global uranium oxide needs (3,711 tons).<ref name="infomine">[http://www.infomine.com/minesite/minesite.asp?site=rossing Rössing] (from infomine.com, status Friday 30 September 2005)</ref> The most productive mines are the underground [[McArthur River uranium mine]] in Canada, which produces 13% of the world's uranium, and the underground poly-metallic [[Olympic Dam mine]] in Australia, which is mainly a copper mine, but contains the largest known reserve of uranium ore.]] [[File:Uranium and thorium release from coal combustion.gif|thumb|upright=1.35|Annual release of "technologically enhanced"/concentrated [[naturally occurring radioactive material]], [[uranium]] and [[thorium]] [[radioisotopes]] naturally found in coal and concentrated in heavy/bottom [[coal ash]] and airborne [[fly ash]].<ref name="USGS" >{{cite web |author = U.S. Geological Survey | author-link = USGS |title = Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance |date = October 1997 |url = http://pubs.usgs.gov/fs/1997/fs163-97/FS-163-97.pdf |work = U.S. Geological Survey Fact Sheet FS-163-97 }}</ref> As predicted by [[Oak Ridge National Laboratory|ORNL]] to cumulatively amount to 2.9 million tons over the 1937–2040 period, from the combustion of an estimated 637 billion tons of coal worldwide.<ref name="ornl">{{Cite web|url=http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html|archive-url=https://web.archive.org/web/20070205103749/http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html|url-status=dead|title=Coal Combustion – ORNL Review Vol. 26, No. 3&4, 1993|archive-date=5 February 2007}}</ref> This 2.9 million tons of [[actinide]] fuel, a resource derived from coal ash, would be classified as low grade uranium ore if it occurred naturally.]] {{Main|Nuclear fuel}} {{Further|Nuclear power proposed as renewable energy|Peak uranium}} In 1987, the [[World Commission on Environment and Development]] (WCED) classified fission reactors that produce more [[fissile]] nuclear fuel than they consume (i.e. [[breeder reactor]]s) among conventional renewable energy sources, such as [[Sun|solar]] and [[Hydropower|falling water]].<ref name="Brundtland">{{cite web|title=Chapter 7: Energy: Choices for Environment and Development|url=http://www.un-documents.net/ocf-07.htm|work=Our Common Future: Report of the World Commission on Environment and Development|first=Gro Harlem|last=Brundtland|location=Oslo|date=20 March 1987|access-date=27 March 2013|quote=Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ("breeders") and eventually fusion reactors are also in this category}}</ref> The [[American Petroleum Institute]] likewise does not consider conventional nuclear fission as renewable, but rather that [[breeder reactor]] nuclear power fuel is considered renewable and sustainable, noting that radioactive waste from used [[spent fuel]] rods remains radioactive and so has to be very carefully stored for several hundred years.<ref>{{cite web|url=http://www.api.org/classroom/curricula/nonrenew-resources.cfm|title=Key Characteristics of Nonrenewable Resources|author=American Petroleum Institute|access-date=2010-02-21}}</ref> With the careful monitoring of radioactive waste products also being required upon the use of other renewable energy sources, such as [[geothermal energy]].<ref>http://www.epa.gov/radiation/tenorm/geothermal.html Geothermal Energy Production Waste.</ref> The use of [[nuclear technology]] relying on [[Nuclear fission|fission]] requires [[naturally occurring radioactive material]] as fuel. [[Uranium]], the most common fission fuel, is present in the ground at relatively low concentrations and [[uranium mining|mined]] in 19 countries.<ref>{{cite web|url=http://www.world-nuclear.org/info/inf23.html|title=World Uranium Mining|publisher=World Nuclear Association|access-date=2011-02-28}}</ref> This mined uranium is used to fuel energy-generating nuclear reactors with [[Fissile|fissionable]] [[uranium-235]] which generates heat that is ultimately used to power [[turbine]]s to generate electricity.<ref>{{cite web|url=http://www.world-nuclear.org/education/uran.html|title=What is uranium? How does it work?|publisher=World Nuclear Association|access-date=2011-02-28}}</ref> As of 2013 only a few kilograms (picture available) of uranium have been extracted from the ocean in [[pilot program]]s and it is also believed that the uranium extracted on an industrial scale from the seawater would constantly be replenished from uranium [[leaching (metallurgy)|leached]] from the ocean floor, maintaining the seawater concentration at a stable level.<ref name="gepr.org">{{Cite web|url=http://www.gepr.org/en/contents/20130729-01/|title=The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas: Global Energy Policy Research|website=gepr.org}}</ref> In 2014, with the advances made in the efficiency of seawater uranium extraction, a paper in the journal of ''Marine Science & Engineering'' suggests that with, light water reactors as its target, the process would be [[economy of scale|economically competitive if implemented on a large scale]].<ref>{{Cite journal|title=Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology|first1=Gary|last1=Gill|first2=Wen|last2=Long|first3=Tarang|last3=Khangaonkar|first4=Taiping|last4=Wang|date=22 March 2014|journal=Journal of Marine Science and Engineering|volume=2|issue=1|pages=81–92|doi=10.3390/jmse2010081|doi-access=free}}</ref> Nuclear power provides about 6% of the world's energy and 13–14% of the world's electricity.<ref>[[World Nuclear Association]]. [http://www.world-nuclear-news.org/newsarticle.aspx?id=27665 Another drop in nuclear generation] {{Webarchive|url=https://web.archive.org/web/20140107221735/http://www.world-nuclear-news.org/newsarticle.aspx?id=27665 |date=7 January 2014 }} ''World Nuclear News'', 5 May 2010.</ref> Nuclear energy production is associated with potentially dangerous [[radioactive contamination]] as it relies upon unstable elements. In particular, nuclear power facilities produce about 200,000 metric tons of [[low and intermediate level waste]] (LILW) and 10,000 metric tons of [[high level waste]] (HLW) (including spent fuel designated as waste) each year worldwide.<ref>{{cite web |url=http://www.iaea.org/Publications/Factsheets/English/manradwa.html |title=Factsheets & FAQs |publisher=International Atomic Energy Agency (IAEA) |access-date=2012-02-01 |url-status=dead |archive-url=https://web.archive.org/web/20120125062648/http://www.iaea.org/Publications/Factsheets/English/manradwa.html |archive-date=25 January 2012 }}</ref> Separate from the question of the sustainability of nuclear fuel use are concerns about the high-level radioactive waste the nuclear industry generates, which if not properly contained, is [[Acute radiation syndrome|highly hazardous]] to people and wildlife. The United Nations ([[United Nations Scientific Committee on the Effects of Atomic Radiation|UNSCEAR]]) estimated in 2008 that average annual human radiation exposure includes 0.01 [[millisievert]] (mSv) from the legacy of past atmospheric nuclear testing plus the [[Chernobyl disaster]] and the nuclear fuel cycle, along with 2.0 mSv from natural radioisotopes and 0.4 mSv from [[cosmic ray]]s; all exposures [[Background radiation|vary by location]].<ref name = UNSCEAR>United Nations Scientific Committee on the Effects of Atomic Radiation. [http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf Sources and Effects of Ionizing Radiation, UNSCEAR 2008]</ref> [[Natural uranium]] in some inefficient reactor [[nuclear fuel cycle]]s becomes part of the [[Radioactive waste|nuclear waste]] "[[nuclear fuel cycle|once through]]" stream, and in a similar manner to the scenario were this uranium remained naturally in the ground, this uranium emits various forms of radiation in a [[decay chain]] that has a [[half-life]] of about 4.5 billion years.<ref name="natortg">{{cite web |last=Mcclain |first=D.E. |author2=A.C. Miller |author3=J.F. Kalinich |title=Status of Health Concerns about Military Use of Depleted Uranium and Surrogate Metals in Armor-Penetrating Munitions |publisher=[[NATO]] |date=20 December 2007 |url=http://www.afrri.usuhs.mil/www/outreach/pdf/mcclain_NATO_2005.pdf |access-date=2012-02-01 |url-status=dead |archive-url=https://web.archive.org/web/20120207021921/http://www.afrri.usuhs.mil/www/outreach/pdf/mcclain_NATO_2005.pdf |archive-date=7 February 2012 }}</ref> The storage of this unused uranium and the accompanying fission reaction products has raised public concerns about [[Nuclear and radiation accidents|risks of leaks and containment]], however studies conducted on the [[natural nuclear fission reactor]] in Oklo [[Gabon]], have informed geologists on the proven processes that kept the waste from this 2 billion year old natural nuclear reactor.<ref>{{Cite web|url=https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull42-3/42302680518.pdf|title=The Safety of Radioactive Waste Management| author=AJ González|date= 2000|publisher=IAEA}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)