Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Operator norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Equivalent definitions== Let <math>A : V \to W</math> be a linear operator between normed spaces. The first four definitions are always equivalent, and if in addition <math>V \neq \{0\}</math> then they are all equivalent: :<math> \begin{alignat}{4} \|A\|_\text{op} &= \inf &&\{ c \geq 0 ~&&:~ \| A v \| \leq c \| v \| ~&&~ \text{ for all } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| \leq 1 ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| < 1 ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| \in \{0,1\} ~&&~\mbox{ and } ~&&v \in V \} \\ &= \sup &&\{ \| Av \| ~&&:~ \| v \| = 1 ~&&~\mbox{ and } ~&&v \in V \} \;\;\;\text{ this equality holds if and only if } V \neq \{ 0 \} \\ &= \sup &&\bigg\{ \frac{\| Av \|}{\| v \|} ~&&:~ v \ne 0 ~&&~\mbox{ and } ~&&v \in V \bigg\} \;\;\;\text{ this equality holds if and only if } V \neq \{ 0 \}. \\ \end{alignat} </math> If <math>V = \{0\}</math> then the sets in the last two rows will be empty, and consequently their [[supremum]]s over the set <math>[-\infty, \infty]</math> will equal <math>-\infty</math> instead of the correct value of <math>0.</math> If the supremum is taken over the set <math>[0, \infty]</math> instead, then the supremum of the empty set is <math>0</math> and the formulas hold for any <math>V.</math> Importantly, a linear operator <math>A : V \to W</math> is not, in general, guaranteed to achieve its norm <math>\|A\|_\text{op} = \sup \{\|A v\| : \|v\| \leq 1, v \in V\}</math> on the closed unit ball <math>\{v \in V : \|v\| \leq 1\},</math> meaning that there might not exist any vector <math>u \in V</math> of norm <math>\|u\| \leq 1</math> such that <math>\|A\|_\text{op} = \|A u\|</math> (if such a vector does exist and if <math>A \neq 0,</math> then <math>u</math> would necessarily have unit norm <math>\|u\| = 1</math>). R.C. James proved [[James's theorem]] in 1964, which states that a [[Banach space]] <math>V</math> is [[reflexive space|reflexive]] if and only if every [[bounded linear functional]] <math>f \in V^*</math> achieves its [[Dual norm|norm]] on the closed unit ball.{{sfn|Diestel|1984|p=6}} It follows, in particular, that every non-reflexive Banach space has some bounded linear functional (a type of bounded linear operator) that does not achieve its norm on the closed unit ball. If <math>A : V \to W</math> is bounded then{{sfn|Rudin|1991|pp=92-115}} <math display="block">\|A\|_\text{op} = \sup \left\{\left|w^*(A v)\right| : \|v\| \leq 1, \left\|w^*\right\| \leq 1 \text{ where } v \in V, w^* \in W^*\right\}</math> and{{sfn|Rudin|1991|pp=92-115}} <math display="block">\|A\|_\text{op} = \left\|{}^tA\right\|_\text{op}</math> where <math>{}^t A : W^* \to V^*</math> is the [[Transpose of a linear map|transpose]] of <math>A : V \to W,</math> which is the linear operator defined by <math>w^* \,\mapsto\, w^* \circ A.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)