Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Optimization problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Combinatorial optimization problem== {{Main|Combinatorial optimization}} Formally, a [[combinatorial optimization]] problem {{mvar|A}} is a quadruple{{Citation needed|date=January 2018}} {{math|(''I'', ''f'', ''m'', ''g'')}}, where * {{math|I}} is a [[Set (mathematics)|set]] of instances; * given an instance {{math|''x'' β ''I''}}, {{math|''f''(''x'')}} is the set of feasible solutions; * given an instance {{mvar|x}} and a feasible solution {{mvar|y}} of {{mvar|x}}, {{math|''m''(''x'', ''y'')}} denotes the [[Measure (mathematics)|measure]] of {{mvar|y}}, which is usually a [[Positive (mathematics)|positive]] [[Real number|real]]. * {{mvar|g}} is the goal function, and is either {{math|[[Minimum (mathematics)|min]]}} or {{math|[[Maximum (mathematics)|max]]}}. The goal is then to find for some instance {{mvar|x}} an ''optimal solution'', that is, a feasible solution {{mvar|y}} with <math display=block>m(x, y) = g\left\{ m(x, y') : y' \in f(x) \right\}.</math> For each combinatorial optimization problem, there is a corresponding [[decision problem]] that asks whether there is a feasible solution for some particular measure {{math|''m''<sub>0</sub>}}. For example, if there is a [[Graph (discrete mathematics)|graph]] {{mvar|G}} which contains vertices {{mvar|u}} and {{mvar|v}}, an optimization problem might be "find a path from {{mvar|u}} to {{mvar|v}} that uses the fewest edges". This problem might have an answer of, say, 4. A corresponding decision problem would be "is there a path from {{mvar|u}} to {{mvar|v}} that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no'. In the field of [[approximation algorithm]]s, algorithms are designed to find near-optimal solutions to hard problems. The usual decision version is then an inadequate definition of the problem since it only specifies acceptable solutions. Even though we could introduce suitable decision problems, the problem is more naturally characterized as an optimization problem.<ref name=Ausiello03>{{citation | last1 = Ausiello | first1 = Giorgio | year = 2003 | edition = Corrected | title = Complexity and Approximation | publisher = Springer | isbn = 978-3-540-65431-5 |display-authors=etal}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)