Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Orthographic projection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Multiview projection== [[Image:Convention placement vues dessin technique.svg|thumb|right|Symbols used to define whether a ''multiview projection'' is either third-angle (right) or first-angle (left)]] {{main|Multiview projection}} In ''multiview projection'', up to six pictures of an object are produced, called ''primary views'', with each projection plane parallel to one of the coordinate axes of the object. The views are positioned relative to each other according to either of two schemes: ''first-angle'' or ''third-angle'' projection. In each, the appearances of views may be thought of as being ''projected'' onto planes that form a six-sided box around the object. Although six different sides can be drawn, usually three views of a drawing give enough information to make a three-dimensional object. These views are known as [[front view]] (also ''elevation''), [[top view]] (also ''plan'') and [[end view]] (also ''section''). When the plane or axis of the object depicted is ''not'' parallel to the projection plane, and where multiple sides of an object are visible in the same image, it is called an ''auxiliary view''. Thus ''isometric projection'', ''dimetric projection'' and ''trimetric projection'' would be considered ''auxiliary views'' in multiview projection. A typical characteristic of multiview projection is that one axis of space is usually displayed as vertical.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)