Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Perfect number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Odd perfect numbers ==<!-- This section is linked from [[Unsolved problems in mathematics]] --> {{Unsolved|mathematics|Are there any odd perfect numbers?}} It is unknown whether any odd perfect numbers exist, though various results have been obtained. In 1496, [[Jacques Lefèvre d'Étaples|Jacques Lefèvre]] stated that Euclid's rule gives all perfect numbers,<ref>{{cite book|last=Dickson|first=L. E. | author-link = L. E. Dickson|title=History of the Theory of Numbers, Vol. I|year=1919|publisher=Carnegie Institution of Washington|location=Washington|page=6|url=https://archive.org/stream/historyoftheoryo01dick#page/6/}}</ref> thus implying that no odd perfect number exists, but Euler himself stated: "Whether ... there are any odd perfect numbers is a most difficult question".<ref>{{cite web|url=https://people.math.harvard.edu/~knill/seminars/perfect/handout.pdf|title=The oldest open problem in mathematics |website=Harvard.edu|access-date=16 June 2023}}</ref> More recently, [[Carl Pomerance]] has presented a [[heuristic argument]] suggesting that indeed no odd perfect number should exist.<ref name="oddperfect">[http://oddperfect.org/pomerance.html Oddperfect.org]. {{Webarchive|url=https://web.archive.org/web/20061229094011/http://oddperfect.org/pomerance.html |date=2006-12-29 }}</ref> All perfect numbers are also [[harmonic divisor number]]s, and it has been conjectured as well that there are no odd harmonic divisor numbers other than 1. Many of the properties proved about odd perfect numbers also apply to [[Descartes number]]s, and Pace Nielsen has suggested that sufficient study of those numbers may lead to a proof that no odd perfect numbers exist.<ref>{{cite news |last1=Nadis |first1=Steve |title=Mathematicians Open a New Front on an Ancient Number Problem |url=https://www.quantamagazine.org/mathematicians-open-a-new-front-on-an-ancient-number-problem-20200910/ |access-date=10 September 2020 |work=Quanta Magazine |date=10 September 2020}}</ref> Any odd perfect number ''N'' must satisfy the following conditions: * ''N'' > 10<sup>1500</sup>.<ref name="Ochem and Rao (2012)">{{cite journal | last1=Ochem | first1=Pascal | last2=Rao | first2=Michaël | title=Odd perfect numbers are greater than 10<sup>1500</sup> | journal=[[Mathematics of Computation]] | year=2012 | volume=81 | issue=279 | doi=10.1090/S0025-5718-2012-02563-4 | url=http://www.lirmm.fr/~ochem/opn/opn.pdf | pages=1869–1877 | zbl=1263.11005 | issn=0025-5718 | doi-access=free }}</ref> * ''N'' is not divisible by 105.<ref name="Kühnel U">{{cite journal|last=Kühnel|first=Ullrich|title=Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen|journal=Mathematische Zeitschrift|year=1950|volume=52|pages=202–211|doi=10.1007/BF02230691|s2cid=120754476|language=de}}</ref> * ''N'' is of the form ''N'' ≡ 1 (mod 12) or ''N'' ≡ 117 (mod 468) or ''N'' ≡ 81 (mod 324).<ref name="Roberts T (2008)">{{cite journal|last=Roberts|first=T|title=On the Form of an Odd Perfect Number|journal=Australian Mathematical Gazette|year=2008|volume=35|issue=4|pages=244|url=http://www.austms.org.au/Publ/Gazette/2008/Sep08/CommsRoberts.pdf}}</ref> * The largest prime factor of ''N'' is greater than 10<sup>8</sup>,<ref name="Goto and Ohno (2008)">{{cite journal|last=Goto|first=T|author2=Ohno, Y|title=Odd perfect numbers have a prime factor exceeding 10<sup>8</sup>|journal=Mathematics of Computation|year=2008|volume=77|issue=263|pages=1859–1868|doi=10.1090/S0025-5718-08-02050-9|url=http://www.ma.noda.tus.ac.jp/u/tg/perfect/perfect.pdf|access-date=30 March 2011|bibcode=2008MaCom..77.1859G|doi-access=free}}</ref> and less than <math>\sqrt[3]{3N}.</math> <ref name="AK 2012">{{cite journal |last1=Konyagin |first1=Sergei |last2=Acquaah |first2=Peter |title=On Prime Factors of Odd Perfect Numbers |journal=International Journal of Number Theory |date=2012 |volume=8 |issue=6 |pages=1537–1540|doi=10.1142/S1793042112500935 }}</ref> * The second largest prime factor is greater than 10<sup>4</sup>,<ref name="Ianucci DE (1999)">{{cite journal|last=Iannucci|first=DE|title=The second largest prime divisor of an odd perfect number exceeds ten thousand|journal=Mathematics of Computation|year=1999|volume=68|issue=228|pages=1749–1760|url=https://www.ams.org/journals/mcom/1999-68-228/S0025-5718-99-01126-6/S0025-5718-99-01126-6.pdf|access-date=30 March 2011|doi=10.1090/S0025-5718-99-01126-6|bibcode=1999MaCom..68.1749I|doi-access=free}}</ref> and is less than <math>\sqrt[5]{2N}</math>.<ref name="Zelinsky 2019">{{cite journal |last1=Zelinsky |first1=Joshua |title=Upper bounds on the second largest prime factor of an odd perfect number |journal=International Journal of Number Theory |date=July 2019 |volume=15 |issue=6 |pages=1183–1189 |doi=10.1142/S1793042119500659 |arxiv=1810.11734 |s2cid=62885986 }}.</ref> * The third largest prime factor is greater than 100,<ref name="Ianucci DE (2000)">{{cite journal|last=Iannucci|first=DE|title=The third largest prime divisor of an odd perfect number exceeds one hundred|journal=Mathematics of Computation|year=2000|volume=69|issue=230|pages=867–879|url=https://www.ams.org/journals/mcom/2000-69-230/S0025-5718-99-01127-8/S0025-5718-99-01127-8.pdf|access-date=30 March 2011|doi=10.1090/S0025-5718-99-01127-8|bibcode=2000MaCom..69..867I|doi-access=free}}</ref> and less than <math>\sqrt[6]{2N}.</math><ref name="Zelinsky 2021a">{{cite journal |first1=Sean|last1=Bibby|first2=Pieter|last2=Vyncke|last3=Zelinsky |first3=Joshua |title=On the Third Largest Prime Divisor of an Odd Perfect Number |journal=Integers |date=23 November 2021 |volume=21 |url=http://math.colgate.edu/~integers/v115/v115.pdf |access-date=6 December 2021}}</ref> * ''N'' has at least 101 prime factors and at least 10 distinct prime factors.<ref name="Ochem and Rao (2012)"/><ref name="Nielsen Pace P. (2015)">{{cite journal|last=Nielsen|first=Pace P.|title=Odd perfect numbers, Diophantine equations, and upper bounds|journal=Mathematics of Computation|year=2015|volume=84|issue=295|pages=2549–2567|url=https://math.byu.edu/~pace/BestBound_web.pdf|access-date=13 August 2015|doi=10.1090/S0025-5718-2015-02941-X|doi-access=free}}</ref> If 3 does not divide ''N'', then ''N'' has at least 12 distinct prime factors.<ref name="Nielsen Pace P. (2007)">{{cite journal|last=Nielsen|first=Pace P.|title=Odd perfect numbers have at least nine distinct prime factors|journal=Mathematics of Computation|year=2007|volume=76|pages=2109–2126|url=https://math.byu.edu/~pace/NotEight_web.pdf|access-date=30 March 2011|doi=10.1090/S0025-5718-07-01990-4|issue=260|arxiv=math/0602485|bibcode=2007MaCom..76.2109N|s2cid=2767519}}</ref> * ''N'' is of the form ::<math>N=q^{\alpha} p_1^{2e_1} \cdots p_k^{2e_k}, </math> :where: :* ''q'', ''p''<sub>1</sub>, ..., ''p''<sub>''k''</sub> are distinct odd primes (Euler). :* ''q'' ≡ α ≡ 1 ([[Modular arithmetic|mod]] 4) (Euler). :* The smallest prime factor of ''N'' is at most <math>\frac{k-1}{2}.</math><ref name="Zelinsky 2021">{{cite journal |last1=Zelinsky |first1=Joshua |title=On the Total Number of Prime Factors of an Odd Perfect Number |journal=Integers |date=3 August 2021 |volume=21 |url=http://math.colgate.edu/~integers/v76/v76.pdf |access-date=7 August 2021}}</ref> :* At least one of the prime powers dividing ''N'' exceeds 10<sup>62</sup>.<ref name="Ochem and Rao (2012)"/> :* <math> N < 2^{(4^{k+1}-2^{k+1})}</math><ref name="Chen and Tang">{{cite journal |last1=Chen |first1=Yong-Gao |last2=Tang |first2=Cui-E |title=Improved upper bounds for odd multiperfect numbers. |journal=Bulletin of the Australian Mathematical Society |date=2014 |volume=89 |issue=3 |pages=353–359|doi=10.1017/S0004972713000488 |doi-access=free }}</ref><ref name="Nielsen (2003)">{{cite journal|last=Nielsen|first=Pace P.|title=An upper bound for odd perfect numbers|journal=Integers|year=2003|volume=3|pages=A14–A22|url=http://www.westga.edu/~integers/vol3.html|access-date=23 March 2021}}</ref> :* <math>\alpha + 2e_1 + 2e_2 + 2e_3 + \cdots + 2e_k \geq \frac{99k-224}{37} </math>.<ref name="Zelinsky 2021"/><ref name="Ochem and Rao (2014)">{{cite journal | last1=Ochem | first1=Pascal | last2=Rao | first2=Michaël | title=On the number of prime factors of an odd perfect number. | journal=[[Mathematics of Computation]] | year=2014 | volume=83 | issue=289 | pages=2435–2439 | doi=10.1090/S0025-5718-2013-02776-7 | doi-access=free }}</ref><ref name="ClayotonHansen">{{cite journal |last1=Graeme Clayton, Cody Hansen |title=On inequalities involving counts of the prime factors of an odd perfect number |journal=Integers |date=2023 |volume=23 |arxiv=2303.11974 |url=http://math.colgate.edu/~integers/x79/x79.pdf |access-date=29 November 2023}}</ref> :* <math> qp_1p_2p_3 \cdots p_k < 2N^{\frac{17}{26}}</math>.<ref name="LucaPomerance">{{cite journal |last1=Pomerance |first1=Carl |last2=Luca |first2=Florian |title=On the radical of a perfect number |journal=New York Journal of Mathematics |date=2010 |volume=16 |pages=23–30 |url=http://nyjm.albany.edu/j/2010/16-3.html |access-date=7 December 2018}}</ref> :* <math> \frac{1}{q} + \frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_k} < \ln 2</math>.<ref name="Cohen1978">{{cite journal |last1=Cohen |first1=Graeme |title=On odd perfect numbers |journal=Fibonacci Quarterly |date=1978 |volume=16 |issue=6 |page=523-527|doi=10.1080/00150517.1978.12430277 }}</ref><ref>{{cite journal |last1=Suryanarayana |first1=D. |title=On Odd Perfect Numbers II |journal=Proceedings of the American Mathematical Society |date=1963 |volume=14 |issue=6 |pages=896–904|doi=10.1090/S0002-9939-1963-0155786-8 }}</ref> Furthermore, several minor results are known about the exponents ''e''<sub>1</sub>, ..., ''e''<sub>''k''</sub>. * Not all ''e''<sub>''i''</sub> ≡ 1 ([[Modular arithmetic|mod]] 3).<ref name="McDaniel (1970)">{{cite journal | last1=McDaniel | first1=Wayne L. | title=The non-existence of odd perfect numbers of a certain form | journal=Archiv der Mathematik | volume=21 | year=1970 | issue=1 | pages=52–53 | doi=10.1007/BF01220877 | mr=0258723 | s2cid=121251041 | issn=1420-8938 }}</ref> * Not all ''e''<sub>''i''</sub> ≡ 2 ([[Modular arithmetic|mod]] 5).<ref name="Fletcher, Nielsen and Ochem (2012)">{{cite journal | last1=Fletcher | first1=S. Adam | last2=Nielsen | first2=Pace P. | last3=Ochem | first3=Pascal | title=Sieve methods for odd perfect numbers | journal=[[Mathematics of Computation]] | volume=81 | year=2012 | issue=279 | pages=1753?1776 | doi=10.1090/S0025-5718-2011-02576-7 | url=http://www.lirmm.fr/~ochem/opn/OPNS_Adam_Pace.pdf | mr = 2904601 | issn=0025-5718 | doi-access=free }}</ref> * If all ''e''<sub>''i''</sub> ≡ 1 ([[Modular arithmetic|mod]] 3) or 2 ([[Modular arithmetic|mod]] 5), then the smallest prime factor of ''N'' must lie between 10<sup>8</sup> and 10<sup>1000</sup>.<ref name="Fletcher, Nielsen and Ochem (2012)"/> * More generally, if all 2''e''<sub>''i''</sub>+1 have a prime factor in a given finite set ''S'', then the smallest prime factor of ''N'' must be smaller than an effectively computable constant depending only on ''S''.<ref name="Fletcher, Nielsen and Ochem (2012)"/> * If (''e''<sub>1</sub>, ..., ''e''<sub>''k''</sub>) = (1, ..., 1, 2, ..., 2) with ''t'' ones and ''u'' twos, then <math>(t-1)/4 \leq u \leq 2t+\sqrt{\alpha}</math>.<ref name="Cohen (1987)">{{cite journal | last1=Cohen | first1=G. L. | title=On the largest component of an odd perfect number | journal=Journal of the Australian Mathematical Society, Series A | volume=42 | year=1987 | issue=2 | pages=280–286 | doi=10.1017/S1446788700028251 | mr = 0869751| issn=1446-8107 | doi-access=free }}</ref> * (''e''<sub>1</sub>, ..., ''e''<sub>''k''</sub>) ≠ (1, ..., 1, 3),<ref name="Kanold (1950)">{{cite journal | last1=Kanold | author-link=:de:Hans-Joachim Kanold | first1=Hans-Joachim | title=Satze uber Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretisehe Probleme. II | journal=[[Journal für die reine und angewandte Mathematik]] | volume=188 | year=1950 | issue=1 | pages=129–146 | doi=10.1515/crll.1950.188.129 | mr=0044579 | s2cid=122452828 | issn=1435-5345 }}</ref> (1, ..., 1, 5), (1, ..., 1, 6).<ref name="Cohen and Williams (1985)">{{cite journal | last1=Cohen | first1=G. L. | last2=Williams | first2=R. J. | title=Extensions of some results concerning odd perfect numbers | journal=[[Fibonacci Quarterly]] | volume=23 | year=1985 | issue=1 | pages=70–76 | doi=10.1080/00150517.1985.12429857 | url=https://www.fq.math.ca/Scanned/23-1/cohen.pdf | mr=0786364 | issn=0015-0517 }}</ref> * If {{math|1= ''e''<sub>1</sub> = ... = ''e''<sub>''k''</sub> = ''e''}}, then ** ''e'' cannot be 3,<ref name="Hagis and McDaniel (1972)">{{cite journal | last1=Hagis | first1=Peter Jr. | last2=McDaniel | first2=Wayne L. | title=A new result concerning the structure of odd perfect numbers | journal=Proceedings of the American Mathematical Society | volume=32 | year=1972 | issue=1 | pages=13–15 | doi=10.1090/S0002-9939-1972-0292740-5 | mr = 0292740 | issn=1088-6826 | doi-access=free }}</ref> 5, 24,<ref name="McDaniel and Hagis (1975)">{{cite journal | last1=McDaniel | first1=Wayne L. | last2=Hagis | first2=Peter Jr. | title=Some results concerning the non-existence of odd perfect numbers of the form <math>p^{\alpha} M^{2\beta}</math> | journal=[[Fibonacci Quarterly]] | volume=13 | year=1975 | issue=1 | pages=25–28 | doi=10.1080/00150517.1975.12430680 | url=https://www.fq.math.ca/Scanned/13-1/mcdaniel.pdf | mr=0354538 | issn=0015-0517 }}</ref> 6, 8, 11, 14 or 18.<ref name="Cohen and Williams (1985)" /> ** <math> k\leq 2e^2+8e+2</math> and <math> N<2^{4^{2e^2 + 8e+3}}</math>.<ref name="Yamada (2019)">{{cite journal | last1=Yamada | first1=Tomohiro | title=A new upper bound for odd perfect numbers of a special form | journal=Colloquium Mathematicum | volume=156 | year=2019 | issue=1 | pages=15–21 | doi=10.4064/cm7339-3-2018 | issn=1730-6302 | arxiv=1706.09341 | s2cid=119175632 }}</ref> In 1888, [[James Joseph Sylvester|Sylvester]] stated:<ref>The Collected Mathematical Papers of James Joseph Sylvester p. 590, tr. from "Sur les nombres dits de Hamilton", ''Compte Rendu de l'Association Française'' (Toulouse, 1887), pp. 164–168.</ref> {{blockquote|... a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number]—its escape, so to say, from the complex web of conditions which hem it in on all sides—would be little short of a miracle.}} On the other hand, several odd integers come close to being perfect. René Descartes observed that the number {{math|''D'' {{=}} 3<sup>2</sup> ⋅ 7<sup>2</sup> ⋅ 11<sup>2</sup> ⋅ 13<sup>2</sup> ⋅ 22021 {{=}} (3⋅1001)<sup>2</sup> ⋅ (22⋅1001 − 1) {{=}} 198585576189}} would be an odd perfect number if only {{math|22021 ({{=}} 19<sup>2</sup> ⋅ 61)}} were a prime number. The odd numbers with this property (they would be perfect if one of their composite factors were prime) are the [[Descartes number]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)