Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permian–Triassic extinction event
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Marine organisms === [[Marine invertebrates]] suffered the greatest losses during the P–Tr extinction. Evidence of this was found in samples from south China sections at the P–Tr boundary. Here, 286 out of 329 marine invertebrate genera disappear within the final two sedimentary zones containing [[conodont]]s from the Permian.<ref name="Jin2000" /> The decrease in [[Biodiversity|diversity]] was probably caused by a sharp increase in extinctions, rather than a decrease in [[speciation]].<ref>{{Cite journal |last1=Bambach |first1=R. K. |last2=Knoll |first2=A. H. |last3=Wang |first3=S. C. |title=Origination, extinction, and mass depletions of marine diversity |journal=[[Paleobiology (journal)|Paleobiology]] |volume=30 |issue=4 |pages=522–542 |date=December 2004 |url=http://www.bioone.org/perlserv/?request=get-document&issn=0094-8373&volume=30&page=522 |doi=10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2 |bibcode=2004Pbio...30..522B |s2cid=17279135 |issn=0094-8373}}</ref> The extinction primarily affected organisms with [[calcium carbonate]] skeletons, especially those reliant on stable CO<sub>2</sub> levels to produce their skeletons. These organisms were susceptible to the effects of the [[ocean acidification]] that resulted from increased atmospheric CO<sub>2</sub>.<ref name="Knoll2004">{{cite book |url=http://www.geochem.geos.vt.edu/bgep/pubs/Chapter_11_Knoll.pdf |title=Reviews in Mineralogy and Geochemistry |vauthors=Knoll AH |year=2004 |veditors=Dove PM, DeYoreo JJ, Weiner S |article=Biomineralization and evolutionary history |archive-url=https://web.archive.org/web/20100620222809/http://www.geochem.geos.vt.edu/bgep/pubs/Chapter_11_Knoll.pdf |archive-date=2010-06-20 |url-status=dead}}</ref> Organisms that relied on [[haemocyanin]] or [[haemoglobin]] for transporting oxygen were more resistant to extinction than those utilizing [[hemerythrin]] or oxygen diffusion.<ref>{{Cite journal |last1=Song |first1=Haijun |last2=Wu |first2=Yuyang |last3=Dai |first3=Xu |last4=Dal Corso |first4=Jacopo |last5=Wang |first5=Fengyu |last6=Feng |first6=Yan |last7=Chu |first7=Daoliang |last8=Tian |first8=Li |last9=Song |first9=Huyue |last10=Foster |first10=William J. |date=6 May 2024 |title=Respiratory protein-driven selectivity during the Permian-Triassic mass extinction |journal=The Innovation |language=en |volume=5 |issue=3 |pages=100618 |doi=10.1016/j.xinn.2024.100618 |pmid=38638583 |pmc=11025005 |bibcode=2024Innov...500618S }}</ref> There is also evidence that endemism was a strong risk factor influencing a taxon's likelihood of extinction. Bivalve taxa that were endemic and localized to a specific region were more likely to go extinct than cosmopolitan taxa.<ref>{{cite journal |last1=Yan |first1=Jia |last2=Song |first2=Haijun |last3=Dai |first3=Xu |date=1 February 2023 |title=Increased bivalve cosmopolitanism during the mid-Phanerozoic mass extinctions |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018222005338 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=611 |page=111362 |doi=10.1016/j.palaeo.2022.111362 |bibcode=2023PPP...61111362Y |access-date=20 February 2023|url-access=subscription }}</ref> There was little latitudinal difference in the survival rates of taxa.<ref>{{cite journal |last1=Allen |first1=Bethany J. |last2=Clapham |first2=Matthew E. |last3=Saupe |first3=Erin E. |last4=Wignall |first4=Paul Barry |last5=Hill |first5=Daniel J. |last6=Dunhill |first6=Alexander M. |date=10 February 2023 |title=Estimating spatial variation in origination and extinction in deep time: a case study using the Permian–Triassic marine invertebrate fossil record |journal=[[Paleobiology (journal)|Paleobiology]] |volume=49 |issue=3 |pages=509–526 |doi=10.1017/pab.2023.1 |bibcode=2023Pbio...49..509A |s2cid=256801383 |doi-access=free |hdl=20.500.11850/598054 |hdl-access=free }}</ref> Organisms that inhabited refugia less affected by global warming experienced lesser or delayed extinctions.<ref>{{Cite journal |last1=Jiang |first1=Haishui |last2=Joachimski |first2=Michael M. |last3=Wignall |first3=Paul Barry |last4=Zhang |first4=Muhui |last5=Lai |first5=Xulong |date=15 December 2015 |title=A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou Province, South China) |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018215005647 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=440 |pages=690–695 |doi=10.1016/j.palaeo.2015.10.002 |bibcode=2015PPP...440..690J |access-date=13 October 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> Among [[Benthos|benthic organisms]] the extinction event multiplied [[background extinction rate]]s, and therefore caused maximum species loss to [[Taxon|taxa]] that had a high background extinction rate (by implication, taxa with a high [[Population turnover|turnover]]).<ref name=Stanley2008>{{cite journal | last = Stanley |first=S. M. | year = 2008 | title = Predation defeats competition on the seafloor | journal = [[Paleobiology (journal)|Paleobiology]] | volume = 34 | issue = 1 | pages = 1–21 | url = http://paleobiol.geoscienceworld.org/cgi/content/short/34/1/1 | access-date = 2008-05-13 | doi = 10.1666/07026.1|bibcode=2008Pbio...34....1S | s2cid = 83713101 | url-access = subscription }}</ref><ref name=Stanley2007>{{cite journal | last = Stanley | first = S. M. | year = 2007 | title = An Analysis of the History of Marine Animal Diversity | journal = [[Paleobiology (journal)|Paleobiology]] | volume = 33 | issue = sp6 | pages = 1–55 | url=http://paleobiol.geoscienceworld.org/cgi/content/abstract/33/4_Suppl/1 | doi = 10.1666/06020.1| bibcode = 2007Pbio...33R...1S | s2cid = 86014119 | url-access = subscription }}</ref> The extinction rate of marine organisms was catastrophic.<ref name="Jin2000" /><ref>{{cite journal|last=McKinney |first=M. L.|year=1987|title=Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa|journal=[[Nature (journal)|Nature]]|volume=325|issue=6100|pages=143–145|doi=10.1038/325143a0|bibcode = 1987Natur.325..143M |s2cid=13473769}}</ref><ref name="Twitchett">{{cite journal |title=Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis |vauthors=Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB |journal=[[Geology (journal)|Geology]] |year=2001 |volume=29 |issue=4 |pages=351–354 |doi=10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2 |issn=0091-7613 |bibcode = 2001Geo....29..351T }}</ref> Bioturbators were extremely severely affected, as evidenced by the loss of the sedimentary mixed layer in many marine facies during the end-Permian extinction.<ref>{{cite journal |last1=Hofmann |first1=R. |last2=Buatois |first2=L. A. |last3=MacNaughton |first3=R. B. |last4=Mángano |first4=M. G. |date=15 June 2015 |title=Loss of the sedimentary mixed layer as a result of the end-Permian extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018215001674 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=428 |pages=1–11 |doi=10.1016/j.palaeo.2015.03.036 |bibcode=2015PPP...428....1H |access-date=19 December 2022|url-access=subscription }}</ref> Surviving marine invertebrate groups included articulate [[brachiopods]] (those with a hinge),<ref>{{Cite web|title = Permian: The Marine Realm and The End-Permian Extinction|url = http://paleobiology.si.edu/geotime/main/htmlversion/permian4.html|website = paleobiology.si.edu|access-date = 2016-01-26}}</ref> which had undergone a slow decline in numbers since the P–Tr extinction; the [[Ceratitida]] order of [[ammonite]]s;<ref name="Encyclopædia Britannica">{{Cite web|title = Permian extinction|url = https://www.britannica.com/science/Permian-extinction|website = Encyclopædia Britannica|access-date = 2016-01-26}}</ref> and [[crinoid]]s ("sea lilies"),<ref name="Encyclopædia Britannica" /> which very nearly became extinct but later became abundant and diverse. The groups with the highest survival rates generally had active control of [[circulatory system|circulation]], elaborate gas exchange mechanisms, and light calcification; more heavily calcified organisms with simpler breathing apparatuses suffered the greatest loss of species diversity.<ref name="Payne2004Local">{{cite journal |author=Payne, J.L. |author2=Lehrmann, D.J. |author3=Wei, J. |author4=Orchard, M.J. |author5=Schrag, D.P. |author6=Knoll, A.H. |year=2004 |title=Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction |url=http://pangea.stanford.edu/~jlpayne/Payne_et_al_2004.pdf |journal=[[Science (journal)|Science]] |volume=305 |issue=5683 |pages=506–9 |bibcode=2004Sci...305..506P |citeseerx=10.1.1.582.9406 |doi=10.1126/science.1097023 |pmid=15273391 |s2cid=35498132}}</ref><ref name=Knoll1996>{{cite journal | last1 = Knoll |first1=A. H. |last2=Bambach |first2=R. K. |last3=Canfield |first3=D. E. |last4=Grotzinger |first4=J. P. | year = 1996 | title = Comparative Earth history and Late Permian mass extinction | journal = [[Science (journal)|Science]] | volume = 273| issue = 5274 | pages = 452–457 | doi = 10.1126/science.273.5274.452 | pmid = 8662528 |bibcode = 1996Sci...273..452K |s2cid=35958753 }}</ref> In the case of the brachiopods, at least, surviving [[Taxon|taxa]] were generally small, rare members of a formerly diverse community.<ref name=Leighton2008>{{cite journal | last1 = Leighton |first1=L. R. |last2=Schneider |first2=C. L.| year = 2008 | title = Taxon characteristics that promote survivorship through the Permian–Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna | journal = [[Paleobiology (journal)|Paleobiology]]| volume = 34 | issue = 1 | pages = 65–79 | doi = 10.1666/06082.1|s2cid=86843206 }}</ref> Conodonts were severely affected both in terms of taxonomic and morphological diversity, although not as severely as during the Capitanian mass extinction.<ref>{{Cite journal |last1=Xue |first1=Chunling |last2=Yuan |first2=Dong-xun |last3=Chen |first3=Yanlong |last4=Stubbs |first4=Thomas L. |last5=Zhao |first5=Yueli |last6=Zhang |first6=Zhifei |date=15 May 2024 |title=Morphological innovation after mass extinction events in Permian and Early Triassic conodonts based on Polygnathacea |url=https://linkinghub.elsevier.com/retrieve/pii/S003101822400138X |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=642 |pages=112149 |doi=10.1016/j.palaeo.2024.112149 |bibcode=2024PPP...64212149X |access-date=21 May 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> The [[Ammonoidea|ammonoids]], which had been in a long-term decline for the 30 million years since the [[Roadian]] (middle Permian), suffered a selective extinction pulse 10 million years before the main event, at the end of the [[Capitanian]] stage. In this preliminary extinction, which greatly reduced [[Guild (ecology)|disparity]], or the range of different ecological guilds, environmental factors were apparently responsible. Diversity and disparity fell further until the P–Tr boundary; the extinction here (P–Tr) was non-selective, consistent with a catastrophic initiator. During the Triassic, diversity rose rapidly, but disparity remained low.<ref>{{Cite journal| last1 = Villier | first1 = L. | last2 = Korn | first2 = D. | title = Morphological Disparity of Ammonoids and the Mark of Permian Mass Extinctions | journal = [[Science (journal)|Science]] | volume = 306 | issue =5694 | pages = 264–266 | date=October 2004 | issn = 0036-8075 | pmid = 15472073 | doi = 10.1126/science.1102127 |bibcode = 2004Sci...306..264V| s2cid = 17304091 }}</ref> The range of morphospace occupied by the ammonoids, that is, their range of possible forms, shapes or structures, became more restricted as the Permian progressed. A few million years into the Triassic, the original range of ammonoid structures was once again reoccupied, but the parameters were now shared differently among [[clades]].<ref>{{Cite journal| first1 = W. B.| last1 = Saunders| first2 = E.| last2 = Greenfest-Allen| first3 = D. M.| last3 = Work| first4 = S. V.| last4 = Nikolaeva| title = Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace| journal = [[Paleobiology (journal)|Paleobiology]]| volume = 34| issue = 1| pages = 128–154| year = 2008| doi = 10.1666/07053.1| bibcode = 2008Pbio...34..128S| s2cid = 83650272}}</ref> Ostracods experienced prolonged diversity perturbations during the Changhsingian before the PTME proper, when immense proportions of them abruptly vanished.<ref>{{cite journal |last1=Crasquin |first1=Sylvie |last2=Forel |first2=Marie-Béatrice |last3=Qinglai |first3=Feng |last4=Aihua |first4=Yuan |last5=Baudin |first5=François |last6=Collin |first6=Pierre-Yves |date=30 July 2010 |title=Ostracods (Crustacea) through the Permian-Triassic boundary in South China: the Meishan stratotype (Zhejiang Province) |url=https://www.tandfonline.com/doi/abs/10.1080/14772011003784992 |journal=[[Journal of Systematic Palaeontology]] |volume=8 |issue=3 |pages=331–370 |doi=10.1080/14772011003784992 |bibcode=2010JSPal...8..331C |s2cid=85986762 |access-date=3 July 2023|url-access=subscription }}</ref> At least 74% of ostracods died out during the PTME itself.<ref name="Forel2012">{{cite journal |last1=Forel |first1=Marie-Béatrice |date=1 August 2012 |title=Ostracods (Crustacea) associated with microbialites across the Permian-Triassic boundary in Dajiang (Guizhou Province, South China) |url=https://europeanjournaloftaxonomy.eu/index.php/ejt/article/view/117 |journal=[[European Journal of Taxonomy]] |issue=19 |pages=1–34 |doi=10.5852/ejt.2012.19 |access-date=3 July 2023|doi-access=free }}</ref> Bryozoans had been on a long-term decline throughout the Late Permian epoch before they suffered even more catastrophic losses during the PTME,<ref>{{Cite journal |last1=Powers |first1=Catherine M. |last2=Bottjer |first2=David J. |date=1 November 2007 |title=Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of long-term environmental stress |url=https://pubs.geoscienceworld.org/geology/article/35/11/995-998/129752 |journal=[[Geology (journal)|Geology]] |language=en |volume=35 |issue=11 |pages=995 |doi=10.1130/G23858A.1 |bibcode=2007Geo....35..995P |issn=0091-7613 |access-date=30 December 2023|url-access=subscription }}</ref> being the most severely affected clade among the lophophorates.<ref name="PowersAndBottjer2009" /> Deep water sponges suffered a significant diversity loss and exhibited a decrease in spicule size over the course of the PTME. Shallow water sponges were affected much less strongly; they experienced an increase in spicule size and much lower loss of morphological diversity compared to their deep water counterparts.<ref name="DeclineOfSiliceousSponges">{{cite journal |last1=Liu |first1=Guichun |last2=Feng |first2=Qinglai |last3=Shen |first3=Jun |last4=Yu |first4=Jianxin |last5=He |first5=Weihong |last6=Algeo |first6=Thomas J. |title=Decline of Siliceous Sponges and Spicule Miniaturization Induced by Marine Productivity Collapse and Expanding Anoxia During the Permian-Triassic Crisis in South China |date=1 August 2013 |url=https://pubs.geoscienceworld.org/sepm/palaios/article-abstract/28/8/664/146368/DECLINE-OF-SILICEOUS-SPONGES-AND-SPICULE |journal=[[PALAIOS]] |volume=28 |issue=8 |pages=664–679 |doi=10.2110/palo.2013.p13-035r |s2cid=128751510 |access-date=31 May 2023|url-access=subscription }}</ref> Foraminifera suffered a severe bottleneck in diversity.<ref name="NatureThroughTime">{{cite book |last1=Delfini |first1=Massimo |last2=Kustatscher |first2=Evelyn |last3=Lavezzi |first3=Fabrizio |last4=Bernardi |first4=Massimo |title=Nature through Time |chapter=The End-Permian Mass Extinction: Nature's Revolution |series=Springer Textbooks in Earth Sciences, Geography and Environment |editor-last1=Martinetto |editor-first1=Edoardo |editor-last2=Tschopp |editor-first2=Emanuel |editor-last3=Gastaldo |editor-first3=Robert A. |date=29 July 2021 |url=https://link.springer.com/book/10.1007/978-3-030-35058-1 |chapter-url=https://link.springer.com/chapter/10.1007/978-3-030-35058-1_10?error=cookies_not_supported&code=aba29752-f20d-4748-90c7-88fdd0fc23ed |publisher=Springer Cham |pages=253–267 |doi=10.1007/978-3-030-35058-1_10 |isbn=978-3-030-35060-4|s2cid=226405085 }}</ref> Evidence from South China indicates the foraminiferal extinction had two pulses.<ref>{{Cite journal |last1=Song |first1=Haijun |last2=Tong |first2=Jinnan |last3=Chen |first3=Zhong-Qiang Chen |date=13 July 2008 |title=Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China |url=http://www.tandfonline.com/doi/abs/10.1080/08120090903002599 |journal=[[Australian Journal of Earth Sciences]] |language=en |volume=56 |issue=6 |pages=765–773 |doi=10.1080/08120090903002599 |issn=0812-0099 |access-date=28 October 2024 |via=Taylor and Francis Online|url-access=subscription }}</ref> Foraminiferal biodiversity hotspots shifted into deeper waters during the PTME.<ref name="LiuEtAl2020Foraminifera">{{Cite journal |last1=Liu |first1=Xiaokang |last2=Song |first2=Haijun |last3=Bond |first3=David P.G. |last4=Tong |first4=Jinnan |last5=Benton |first5=Michael James |date=October 2020 |title=Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China |url=https://linkinghub.elsevier.com/retrieve/pii/S0012825220303755 |journal=[[Earth-Science Reviews]] |language=en |volume=209 |pages=103329 |doi=10.1016/j.earscirev.2020.103329 |bibcode=2020ESRv..20903329L |access-date=28 October 2024 |via=Elsevier Science Direct}}</ref> Approximately 93% of latest Permian foraminifera became extinct, with 50% of the clade Textulariina, 92% of Lagenida, 96% of Fusulinida, and 100% of Miliolida disappearing.<ref>{{cite journal |last1=Song |first1=Haijun |last2=Tong |first2=Jinnan |last3=Chen |first3=Zhong-Qiang |last4=Yang |first4=Hao |last5=Wang |first5=Yongbiao |date=14 July 2015 |title=End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China |url=https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/endpermian-mass-extinction-of-foraminifers-in-the-nanpanjiang-basin-south-china/627B9121604EBB9E6020DEFF730206BA |journal=[[Journal of Paleontology]] |volume=83 |issue=5 |pages=718–738 |doi=10.1666/08-175.1 |s2cid=130765890 |access-date=23 March 2023|url-access=subscription }}</ref> Foraminifera that were calcareous suffered an extinction rate of 91%.<ref>{{Cite journal |last1=Groves |first1=John R. |last2=Altiner |first2=Demír |date=September–October 2005 |title=Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction |url=https://www.sciencedirect.com/science/article/pii/S1631068305000199 |journal=[[Comptes Rendus Palevol]] |language=en |volume=4 |issue=6–7 |pages=487–500 |doi=10.1016/j.crpv.2004.12.007 |bibcode=2005CRPal...4..487G |access-date=28 October 2024 |via=Elsevier Science Direct|url-access=subscription }}</ref> The reason why lagenides survived while fusulinoidean fusulinides went completely extinct may have been due to the greater range of environmental tolerance and greater geographic distribution of the former compared to the latter.<ref name="GrovesEtAl2017">{{cite journal |last1=Groves |first1=John R. |last2=Altiner |first2=Demír |last3=Rettori |first3=Roberto |date=11 August 2017 |title=Extinction, Survival, and Recovery of Lagenide Foraminifers in the Permian–Triassic Boundary Interval, Central Taurides, Turkey |url=https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/extinction-survival-and-recovery-of-lagenide-foraminifers-in-the-permiantriassic-boundary-interval-central-taurides-turkey/5DFB53BB450B1C47FF194171D5EAEA69 |journal=[[Journal of Paleontology]] |volume=79 |issue=S62 |pages=1–38 |doi=10.1666/0022-3360(2005)79[1:ESAROL]2.0.CO;2 |hdl=11511/41696 |s2cid=130620805 |access-date=23 March 2023|url-access=subscription }}</ref> Cladodontomorph sharks likely survived the extinction by surviving in refugia in the deep oceans, a hypothesis based on the discovery of [[Early Cretaceous]] cladodontomorphs in deep, outer shelf environments.<ref name="Cladodontomorphs">{{cite journal |last1=Guinot |first1=Guillaume |last2=Adnet |first2=Sylvain |last3=Cavin |first3=Lionel |last4=Cappetta |first4=Henri |date=29 October 2013 |title=Cretaceous stem chondrichthyans survived the end-Permian mass extinction |journal=[[Nature Communications]] |volume=4 |page=2669 |doi=10.1038/ncomms3669 |pmid=24169620 |bibcode=2013NatCo...4.2669G |s2cid=205320689 |doi-access=free }}</ref> [[Ichthyosaurs]], which evolved immediately before the PTME, were also PTME survivors.<ref name="KearEtAl2023Ichthyosaurs">{{cite journal |last1=Kear |first1=Benjamin P. |last2=Engelschiøn |first2=Victoria S. |last3=Hammer |first3=Øyvind |last4=Roberts |first4=Aubrey J. |last5=Hurum |first5=Jørn H. |date=13 March 2023 |title=Earliest Triassic ichthyosaur fossils push back oceanic reptile origins |journal=[[Current Biology]] |volume=33 |issue=5 |pages=R178–R179 |doi=10.1016/j.cub.2022.12.053 |pmid=36917937 |s2cid=257498390 |doi-access=free |bibcode=2023CBio...33R.178K }}</ref> The [[Lilliput effect]], the phenomenon of dwarfing of species during and immediately following a mass extinction event, has been observed across the Permian-Triassic boundary,<ref name="LilliputEffectAftermathEndPermianExtinctionEvent">{{cite journal |last1=Twitchett |first1=Richard J. |date=20 August 2007 |title=The Lilliput effect in the aftermath of the end-Permian extinction event |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018207001137 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=252 |issue=1–2 |pages=132–144 |doi=10.1016/j.palaeo.2006.11.038 |bibcode=2007PPP...252..132T |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Schaal |first1=Ellen K. |last2=Clapham |first2=Matthew E. |last3=Rego |first3=Brianna L. |last4=Wang |first4=Steve C. |last5=Payne |first5=Jonathan L. |date=6 November 2015 |title=Comparative size evolution of marine clades from the Late Permian through Middle Triassic |url=https://pubs.geoscienceworld.org/paleobiol/article/42/1/127/140555/Comparative-size-evolution-of-marine-clades-from |journal=[[Paleobiology (journal)|Paleobiology]] |volume=42 |issue=1 |pages=127–142 |doi=10.1017/pab.2015.36 |s2cid=18552375 |access-date=13 January 2023}}</ref> notably occurring in foraminifera,<ref>{{cite journal |last1=Feng |first1=Yan |last2=Song |first2=Haijun |last3=Bond |first3=David P. G. |date=1 November 2020 |title=Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions |journal=[[Paleobiology (journal)|Paleobiology]] |volume=46 |issue=4 |pages=511–532 |doi=10.1017/pab.2020.37 |bibcode=2020Pbio...46..511F |s2cid=224855811 |doi-access=free }}</ref><ref>{{cite journal |last1=Song |first1=Haijun |last2=Tong |first2=Jinnan |last3=Chen |first3=Zhong-Qiang |date=15 July 2011 |title=Evolutionary dynamics of the Permian–Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018210006528 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=308 |issue=1–2 |pages=98–110 |doi=10.1016/j.palaeo.2010.10.036 |bibcode=2011PPP...308...98S |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Rego |first1=Brianna L. |last2=Wang |first2=Steve C. |last3=Altiner |first3=Demír |last4=Payne |first4=Jonathan L. |date=8 February 2016 |title=Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/within-and-amonggenus-components-of-size-evolution-during-mass-extinction-recovery-and-background-intervals-a-case-study-of-late-permian-through-late-triassic-foraminifera/DDF33E40E62ACA1918481D99F495FA4D |journal=[[Paleobiology (journal)|Paleobiology]] |volume=38 |issue=4 |pages=627–643 |doi=10.1666/11040.1 |hdl=11511/34619 |s2cid=17284750 |access-date=23 March 2023|url-access=subscription }}</ref> brachiopods,<ref>{{cite journal |last1=He |first1=Weihong |last2=Twitchett |first2=Richard J. |last3=Zhang |first3=Y. |last4=Shi |first4=G. R. |last5=Feng |first5=Q.-L. |last6=Yu |first6=J.-X. |last7=Wu |first7=S.-B. |last8=Peng |first8=X.-F. |date=9 November 2010 |title=Controls on body size during the Late Permian mass extinction event |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-4669.2010.00248.x |journal=[[Geobiology (journal)|Geobiology]] |volume=8 |issue=5 |pages=391–402 |doi=10.1111/j.1472-4669.2010.00248.x |pmid=20550584 |bibcode=2010Gbio....8..391H |s2cid=23096333 |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Chen |first1=Jing |last2=Song |first2=Haijun |last3=He |first3=Weihong |last4=Tong |first4=Jinnan |last5=Wang |first5=Fengyu |last6=Wu |first6=Shunbao |date=1 April 2019 |title=Size variation of brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect following the Permian-Triassic extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018218304929 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=519 |pages=248–257 |doi=10.1016/j.palaeo.2018.07.013 |bibcode=2019PPP...519..248C |s2cid=134806479 |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Shi |first1=Guang R. |last2=Zhang |first2=Yi-chun |last3=Shen |first3=Shu-zhong |last4=He |first4=Wei-hong |date=15 April 2016 |title=Nearshore–offshore–basin species diversity and body size variation patterns in Late Permian (Changhsingian) brachiopods |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=448 |pages=96–107 |doi=10.1016/j.palaeo.2015.07.046 |bibcode=2016PPP...448...96S |doi-access=free |hdl=10536/DRO/DU:30080099 |hdl-access=free }}</ref> bivalves,<ref>{{cite journal |last1=Huang |first1=Yunfei |last2=Tong |first2=Jinnan |last3=Tian |first3=Li |last4=Song |first4=Haijun |last5=Chu |first5=Daoliang |last6=Miao |first6=Xue |last7=Song |first7=Ting |date=1 January 2023 |title=Temporal shell-size variations of bivalves in South China from the Late Permian to the early Middle Triassic |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018222004783 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=609 |page=111307 |doi=10.1016/j.palaeo.2022.111307 |bibcode=2023PPP...60911307H |s2cid=253368808 |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Yates |first1=Adam M. |last2=Neumann |first2=Frank H. |last3=Hancox |first3=P. John |date=2 February 2012 |title=The Earliest Post-Paleozoic Freshwater Bivalves Preserved in Coprolites from the Karoo Basin, South Africa |journal=[[PLOS ONE]] |volume=7 |issue=2 |pages=e30228 |doi=10.1371/journal.pone.0030228 |pmid=22319562 |pmc=3271088 |bibcode=2012PLoSO...730228Y |doi-access=free }}</ref><ref>{{cite journal |last1=Foster |first1=W. J. |last2=Gliwa |first2=J. |last3=Lembke |first3=C. |last4=Pugh |first4=A. C. |last5=Hofmann |first5=R. |last6=Tietje |first6=M. |last7=Varela |first7=S. |last8=Foster |first8=L. C. |last9=Korn |first9=D. |last10=Aberhan |first10=M. |date=January 2020 |title=Evolutionary and ecophenotypic controls on bivalve body size distributions following the end-Permian mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818119305739 |journal=[[Global and Planetary Change]] |volume=185 |page=103088 |doi=10.1016/j.gloplacha.2019.103088 |bibcode=2020GPC...18503088F |s2cid=213294384 |access-date=13 January 2023|url-access=subscription }}</ref> and ostracods.<ref>{{cite journal |last1=Chu |first1=Daoliang |last2=Tong |first2=Jinnan |last3=Song |first3=Haijun |last4=Benton |first4=Michael James |last5=Song |first5=Huyue |last6=Yu |first6=Jianxin |last7=Qiu |first7=Xincheng |last8=Huang |first8=Yunfei |last9=Tian |first9=Li |date=1 October 2015 |title=Lilliput effect in freshwater ostracods during the Permian–Triassic extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018215003004 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=435 |pages=38–52 |doi=10.1016/j.palaeo.2015.06.003 |bibcode=2015PPP...435...38C |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Forel |first1=Marie-Béatrice |last2=Crasquin |first2=Sylvie |last3=Chitnarin |first3=Anisong |last4=Angiolini |first4=Lucia |last5=Gaetani |first5=Maurizio |date=25 February 2015 |title=Precocious sexual dimorphism and the Lilliput effect in Neo-Tethyan Ostracoda (Crustacea) through the Permian–Triassic boundary |url=https://onlinelibrary.wiley.com/doi/full/10.1111/pala.12151 |journal=[[Palaeontology (journal)|Palaeontology]] |volume=58 |issue=3 |pages=409–454 |doi=10.1111/pala.12151 |bibcode=2015Palgy..58..409F |hdl=2434/354270 |s2cid=140198533 |access-date=23 May 2023|hdl-access=free }}</ref> Though gastropods that survived the cataclysm were smaller in size than those that did not,<ref>{{cite journal |last1=Payne |first1=Jonathan L. |date=8 April 2016 |title=Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/evolutionary-dynamics-of-gastropod-size-across-the-endpermian-extinction-and-through-the-triassic-recovery-interval/5E66427F02CD63A731971EBD09F12ACF |journal=[[Paleobiology (journal)|Paleobiology]] |volume=31 |issue=2 |pages=269–290 |doi=10.1666/0094-8373(2005)031[0269:EDOGSA]2.0.CO;2 |s2cid=7367192 |access-date=23 March 2023|url-access=subscription }}</ref> it remains debated whether the Lilliput effect truly took hold among gastropods.<ref>{{cite journal |last1=Brayard |first1=Arnaud |last2=Nützel |first2=Alexander |last3=Stephen |first3=Daniel A. |last4=Bylund |first4=Kevin G. |last5=Jenks |first5=Jim |last6=Bucher |first6=Hugo |date=1 February 2010 |title=Gastropod evidence against the Early Triassic Lilliput effect |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/38/2/147/130196/Gastropod-evidence-against-the-Early-Triassic?redirectedFrom=fulltext&casa_token=60Fb3K0zMJwAAAAA:DhYezXj8KGzLNoRTZrBE_j0wA7r4dukCPgwOrHMetVKPp6jP0m5KqM1cWquxpdbOu5QbCM3f |journal=[[Geology (journal)|Geology]] |volume=37 |issue=2 |pages=147–150 |doi=10.1130/G30553.1 |bibcode=2010Geo....38..147B |access-date=13 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Fraiser |first1=M. L. |last2=Twitchett |first2=Richard J. |last3=Frederickson |first3=J. A. |last4=Metcalfe |first4=B. |last5=Bottjer |first5=D. J. |date=1 January 2011 |title=Gastropod evidence against the Early Triassic Lilliput effect: COMMENT |journal=[[Geology (journal)|Geology]] |volume=39 |issue=1 |pages=e232 |doi=10.1130/G31614C.1 |bibcode=2011Geo....39E.232F |doi-access=free }}</ref><ref>{{cite journal |last1=Brayard |first1=Arnaud |last2=Nützel |first2=Alexander |last3=Kajm |first3=Andrzej |last4=Escarguel |first4=Gilles |last5=Hautmann |first5=Michael |last6=Stephen |first6=Daniel A. |last7=Bylund |first7=Kevin G. |last8=Jenks |first8=Jim |last9=Bucher |first9=Hugo |date=1 January 2011 |title=Gastropod evidence against the Early Triassic Lilliput effect: REPLY |journal=[[Geology (journal)|Geology]] |volume=39 |issue=1 |pages=e233 |doi=10.1130/G31765Y.1 |bibcode=2011Geo....39E.233B |doi-access=free }}</ref> Some gastropod taxa, termed "Gulliver gastropods", ballooned in size during and immediately following the mass extinction,<ref>{{cite journal |last1=Brayard |first1=Arnaud |last2=Meier |first2=Maximiliano |last3=Escarguel |first3=Gilles |last4=Fara |first4=Emmanuel |last5=Nützel |first5=Alexander |last6=Olivier |first6=Nicolas |last7=Bylund |first7=Kevin G. |last8=Jenks |first8=James F. |last9=Stephen |first9=Daniel A. |last10=Hautmann |first10=Michael |last11=Vennin |first11=Emmanuelle |last12=Bucher |first12=Hugo |date=July 2015 |title=Early Triassic Gulliver gastropods: Spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825215000574 |journal=[[Earth-Science Reviews]] |volume=146 |pages=31–64 |doi=10.1016/j.earscirev.2015.03.005 |bibcode=2015ESRv..146...31B |access-date=20 January 2023|url-access=subscription }}</ref> exemplifying the Lilliput effect's opposite, which has been dubbed the Brobdingnag effect.<ref>{{cite journal |last1=Atkinson |first1=Jed W. |last2=Wignall |first2=Paul Barry |last3=Morton |first3=Jacob D. |last4=Aze |first4=Tracy |date=9 January 2019 |title=Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect |url=https://onlinelibrary.wiley.com/doi/10.1111/pala.12415 |journal=[[Palaeontology (journal)|Palaeontology]] |volume=62 |issue=4 |pages=561–582 |doi=10.1111/pala.12415 |bibcode=2019Palgy..62..561A |s2cid=134070316 |access-date=20 January 2023}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)