Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Photoconductivity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Negative photoconductivity== Some materials exhibit deterioration in photoconductivity upon exposure to illumination.<ref name="Joshi1990">{{cite book|author=N V Joshi|title=Photoconductivity: Art: Science & Technology|url=https://books.google.com/books?id=lv-Nb5-H3pQC&pg=PA272|date=25 May 1990|publisher=CRC Press|isbn=978-0-8247-8321-1}}</ref> One prominent example is [[hydrogenated amorphous silicon]] (a-Si:H) in which a metastable reduction in photoconductivity is observable<ref name="StaeblerWronski1977">{{cite journal|last1=Staebler|first1=D. L.|last2=Wronski|first2=C. R.|title=Reversible conductivity changes in discharge-produced amorphous Si|journal=Applied Physics Letters|volume=31|issue=4|year=1977|pages=292|issn=0003-6951|doi=10.1063/1.89674|bibcode = 1977ApPhL..31..292S }}</ref> (see [[Staebler–Wronski effect]]). Other materials that were reported to exhibit negative photoconductivity include [[Zinc oxide|ZnO nanowires]],<ref name=":0">{{Cite journal |last1=Javadi |first1=Mohammad |last2=Abdi |first2=Yaser |date=2018-07-30 |title=Frequency-driven bulk-to-surface transition of conductivity in ZnO nanowires |url=https://aip.scitation.org/doi/abs/10.1063/1.5039474 |journal=Applied Physics Letters |volume=113 |issue=5 |pages=051603 |doi=10.1063/1.5039474 |bibcode=2018ApPhL.113e1603J |issn=0003-6951|url-access=subscription }}</ref> [[molybdenum disulfide]],<ref name="Serpi1992">{{cite journal|last1=Serpi|first1=A.|title=Negative Photoconductivity in MoS2|journal=Physica Status Solidi A|volume=133|issue=2|year=1992|pages=K73–K77|issn=0031-8965|doi=10.1002/pssa.2211330248|bibcode = 1992PSSAR.133...73S }}</ref> [[graphene]],<ref name="HeymanStein2015">{{cite journal|last1=Heyman|first1=J. N.|last2=Stein|first2=J. D.|last3=Kaminski|first3=Z. S.|last4=Banman|first4=A. R.|last5=Massari|first5=A. M.|last6=Robinson|first6=J. T.|title=Carrier heating and negative photoconductivity in graphene|journal=Journal of Applied Physics|volume=117|issue=1|year=2015|pages=015101|issn=0021-8979|doi=10.1063/1.4905192|arxiv = 1410.7495 |bibcode = 2015JAP...117a5101H |s2cid=118531249 }}</ref> [[indium arsenide]] [[nanowire]]s,<ref>{{Cite journal|last1=Alexander-Webber|first1=Jack A.|last2=Groschner|first2=Catherine K.|last3=Sagade|first3=Abhay A.|last4=Tainter|first4=Gregory|last5=Gonzalez-Zalba|first5=M. Fernando|last6=Di Pietro|first6=Riccardo|last7=Wong-Leung|first7=Jennifer|last8=Tan|first8=H. Hoe|last9=Jagadish|first9=Chennupati|date=2017-12-11|title=Engineering the Photoresponse of InAs Nanowires|journal=ACS Applied Materials & Interfaces|language=EN|volume=9|issue=50|pages=43993–44000|doi=10.1021/acsami.7b14415|pmid=29171260|issn=1944-8244|doi-access=free|hdl=1885/237356|hdl-access=free}}</ref> decorated carbon nanotubes,<ref>{{Cite journal|last1=Jiménez-Marín|first1=E.|last2=Villalpando|first2=I.|last3=Trejo-Valdez|first3=M.|last4=Cervantes-Sodi|first4=F.|last5=Vargas-García|first5=J. R.|last6=Torres-Torres|first6=C.|date=2017-06-01|title=Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes|url=https://www.sciencedirect.com/science/article/pii/S0921510717300569|journal=Materials Science and Engineering: B|language=en|volume=220|pages=22–29|doi=10.1016/j.mseb.2017.03.004|issn=0921-5107|url-access=subscription}}</ref> and metal [[nanoparticle]]s.<ref name="NakanishiBishop2009">{{cite journal|last1=Nakanishi|first1=Hideyuki|last2=Bishop|first2=Kyle J. M.|last3=Kowalczyk|first3=Bartlomiej|last4=Nitzan|first4=Abraham|last5=Weiss|first5=Emily A.|last6=Tretiakov|first6=Konstantin V.|last7=Apodaca|first7=Mario M.|last8=Klajn|first8=Rafal|last9=Stoddart|first9=J. Fraser|last10=Grzybowski|first10=Bartosz A.|title=Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles|journal=Nature|volume=460|issue=7253|year=2009|pages=371–375|issn=0028-0836|doi=10.1038/nature08131|bibcode = 2009Natur.460..371N|pmid=19606145|s2cid=4425298 }}</ref> Under an applied AC voltage and upon UV illumination, [[Zinc oxide|ZnO]] [[Nanowire|nanowires]] exhibit a continuous transition from positive to negative photoconductivity as a function of the AC frequency.<ref name=":0" /> ZnO nanowires also display a frequency-driven [[metal-insulator transition]] at room temperature. The responsible mechanism for both transitions has been attributed to a competition between bulk conduction and surface conduction.<ref name=":0" /> The frequency-driven bulk-to-surface transition of conductivity is expected to be a generic character of semiconductor nanostructures with the large [[Surface-area-to-volume ratio|surface-to-volume ratio]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)