Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Poisson summation formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Distributional formulation== These equations can be interpreted in the language of [[distribution (mathematics)|distribution]]s<ref name="Córdoba"/><ref name="Hörmander"/>{{rp|at=§7.2}} for a function <math>s</math> whose derivatives are all rapidly decreasing (see [[Schwartz function]]). The Poisson summation formula arises as a particular case of the [[Convolution_theorem#Convolution theorem for tempered distributions| Convolution Theorem on tempered distributions]], using the [[Dirac comb]] distribution and its [[Fourier series]]: <math display="block">\sum_{n=-\infty}^\infty \delta(x - nT) \equiv \sum_{k=-\infty}^\infty \frac{1}{T}\cdot e^{- i 2\pi \frac{k}{T} x} \quad\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{1}{T}\cdot \sum_{k=-\infty}^{\infty} \delta (f - k/T).</math> In other words, the periodization of a [[Dirac delta]] <math>\delta,</math> resulting in a [[Dirac comb]], corresponds to the discretization of its spectrum which is constantly one. Hence, this again is a Dirac comb but with reciprocal increments. For the case <math>T = 1,</math> {{EquationNote|Eq.1}} readily follows: <math display="block">\begin{align} \sum_{k=-\infty}^\infty S(k) &= \sum_{k=-\infty}^\infty \left(\int_{-\infty}^{\infty} s(x)\ e^{-i 2\pi k x} dx \right) = \int_{-\infty}^{\infty} s(x) \underbrace{\left(\sum_{k=-\infty}^\infty e^{-i 2\pi k x}\right)}_{\sum_{n=-\infty}^\infty \delta(x-n)} dx \\ &= \sum_{n=-\infty}^\infty \left(\int_{-\infty}^{\infty} s(x)\ \delta(x-n)\ dx \right) = \sum_{n=-\infty}^\infty s(n). \end{align}</math> Similarly: <math display="block">\begin{align} \sum_{k=-\infty}^{\infty} S(f - k/T) &= \sum_{k=-\infty}^{\infty} \mathcal{F}\left \{ s(x)\cdot e^{i 2\pi\frac{k}{T}x}\right \}\\ &= \mathcal{F} \bigg \{s(x)\underbrace{\sum_{k=-\infty}^{\infty} e^{i 2\pi\frac{k}{T}x}}_{T \sum_{n=-\infty}^{\infty} \delta(x-nT)}\bigg \} = \mathcal{F}\left \{\sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \delta(x-nT)\right \}\\ &= \sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \mathcal{F}\left \{\delta(x-nT)\right \} = \sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot e^{-i 2\pi nT f}. \end{align}</math> Or:<ref name="Oppenheim"/>{{rp|p=143}} <math display="block">\begin{align} \sum_{k=-\infty}^{\infty} S(f - k/T) &= S(f) * \sum_{k=-\infty}^{\infty} \delta(f - k/T) \\ &= S(f) * \mathcal{F}\left \{T \sum_{n=-\infty}^{\infty} \delta(x-nT)\right \} \\ &= \mathcal{F}\left \{s(x)\cdot T \sum_{n=-\infty}^{\infty} \delta(x-nT)\right \} = \mathcal{F}\left \{\sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \delta(x-nT)\right \} \quad \text{as above}. \end{align}</math> The Poisson summation formula can also be proved quite conceptually using the compatibility of [[Pontryagin duality]] with [[short exact sequence]]s such as<ref name="Deitmar"/> <math display="inline">0 \to \Z \to \R \to \R / \Z \to 0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)