Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polylogarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relationship to other functions== * For {{math|1=''z'' = 1}}, the polylogarithm reduces to the [[Riemann zeta function]] <math display="block">\operatorname{Li}_s(1) = \zeta(s) \qquad (\operatorname{Re}(s)>1).</math> * The polylogarithm is related to [[Dirichlet eta function]] and the [[Dirichlet beta function]]: <math display="block"> \operatorname{Li}_s(-1) = -\eta(s),</math> where {{math|''η''(''s'')}} is the Dirichlet eta function. For pure imaginary arguments, we have: <math display="block">\operatorname{Li}_s(\pm i) = -2^{-s} \eta(s) \pm i\beta(s),</math> where {{math|''β''(''s'')}} is the Dirichlet beta function. * The polylogarithm is related to the [[complete Fermi–Dirac integral]] as: <math display="block">F_s(\mu) = -\operatorname{Li}_{s+1}(-e^\mu).</math> * The polylogarithm is related to the complete Bose–Einstein integral as: <math display="block">G_s(\mu) = \operatorname{Li}_{s+1}(e^\mu).</math> * The polylogarithm is a special case of the [[incomplete polylogarithm]] function <math display="block"> \operatorname{Li}_s(z) = \operatorname{Li}_s(0,z) .</math> * The polylogarithm is a special case of the [[Lerch transcendent]] {{harv|Erdélyi et al.|1981|loc=§ 1.11-14}} <math display="block">\operatorname{Li}_s(z) = z\Phi(z,s,1).</math> * The polylogarithm is related to the [[Hurwitz zeta function]] by: <math display="block">\operatorname{Li}_s(z) = {\Gamma(1 - s) \over (2\pi)^{1-s}} \left[i^{1-s} \zeta \left(1 - s, \frac{1}{2} + {\ln(-z) \over {2\pi i}} \right) + i^{s-1} ~\zeta \left(1 - s, \frac{1}{2} - {\ln(-z) \over {2\pi i}} \right) \right],</math> which relation, however, is invalidated at positive integer ''s'' by [[pole (complex analysis)|poles]] of the [[gamma function]] {{math|Γ(1 − ''s'')}}, and at {{math|1=''s'' = 0}} by a pole of both zeta functions; a derivation of this formula is given under [[#Series representations|series representations]] below. With a little help from a functional equation for the Hurwitz zeta function, the polylogarithm is consequently also related to that function via {{harv|Jonquière|1889}}: <math display="block"> i^{-s} \operatorname{Li}_s(e^{2\pi i x}) + i^s \operatorname{Li}_s(e^{-2\pi i x}) = \frac{(2\pi)^s}{\Gamma(s)} \zeta(1 - s, x), </math> which relation holds for {{math|0 ≤ Re(''x'') < 1}} if {{math|Im(''x'') ≥ 0}}, and for {{math|0 < Re(''x'') ≤ 1}} if {{math|Im(''x'') < 0}}. Equivalently, for all complex ''s'' and for complex {{math|''z'' ∉ {{open-closed|0, 1}}}}, the inversion formula reads <math display="block"> \operatorname{Li}_s(z) + (-1)^s \operatorname{Li}_s(1/z) = \frac{(2\pi i)^s}{\Gamma(s)} ~\zeta \left(1 - s, ~\frac{1}{2} + {\ln(-z) \over {2\pi i}} \right), </math> and for all complex ''s'' and for complex {{math|''z'' ∉ {{open-open|1, ∞}}}} <math display="block"> \operatorname{Li}_s(z) + (-1)^s \operatorname{Li}_s(1/z) = {(2\pi i)^s \over \Gamma(s)} ~\zeta \left(1 - s, ~\frac{1}{2} - {\ln(-1/z) \over {2\pi i}} \right) . </math> For {{math|''z'' ∉ {{open-open|0, ∞}}}}, one has {{math|1=ln(−''z'') = −ln(−<sup>1</sup>⁄<sub>''z''</sub>)}}, and both expressions agree. These relations furnish the analytic continuation of the polylogarithm beyond the circle of convergence |''z''| = 1 of the defining power series. (The corresponding equation of {{harvtxt|Jonquière|1889|loc=eq. 5}} and {{harvtxt|Erdélyi et al.|1981|loc=§ 1.11-16}} is not correct if one assumes that the principal branches of the polylogarithm and the logarithm are used simultaneously.) See the next item for a simplified formula when ''s'' is an integer. * For positive integer polylogarithm orders ''s'', the Hurwitz zeta function ζ(1−''s'', ''x'') reduces to [[Bernoulli polynomials]], {{math|1=ζ(1−''n'', ''x'') = −B<sub>''n''</sub>(''x'') / ''n''}}, and Jonquière's inversion formula for ''n'' = 1, 2, 3, … becomes: <math display="block">\operatorname{Li}_{n}(e^{2\pi i x}) + (-1)^n \operatorname{Li}_{n}(e^{-2\pi i x}) = -{(2\pi i)^n \over n!} B_n(x),</math> where again 0 ≤ Re(''x'') < 1 if Im(''x'') ≥ 0, and 0 < Re(''x'') ≤ 1 if Im(''x'') < 0. Upon restriction of the polylogarithm argument to the unit circle, Im(''x'') = 0, the left hand side of this formula simplifies to 2 Re(Li<sub>''n''</sub>(''e''<sup>2''πix''</sup>)) if ''n'' is even, and to 2''i'' Im(Li<sub>''n''</sub>(''e''<sup>2''πix''</sup>)) if ''n'' is odd. For negative integer orders, on the other hand, the divergence of Γ(''s'') implies for all ''z'' that {{harv|Erdélyi et al.|1981|loc=§ 1.11-17}}: <math display="block">\operatorname{Li}_{-n}(z) + (-1)^n \operatorname{Li}_{-n}(1/z) = 0 \qquad (n = 1,2,3,\ldots). </math> More generally, one has for {{math|1=''n'' = 0, ±1, ±2, ±3, …}}: <math display="block">\begin{align} \operatorname{Li}_{n}(z) + (-1)^n \operatorname{Li}_{n}(1/z) &= -\frac{(2\pi i)^n}{n!} B_n \left( \frac{1}{2} + {\ln(-z) \over {2\pi i}} \right) & (z \not\in ]0;1]), \\ \operatorname{Li}_{n}(z) + (-1)^n \operatorname{Li}_{n}(1/z) &= -\frac{(2\pi i)^n}{n!} B_n \left( \frac{1}{2} - {\ln(-1/z) \over {2\pi i}} \right) & (z \not\in ~]1;\infty[), \end{align}</math> where both expressions agree for {{math|''z'' ∉ {{open-open|0, ∞}}}}. (The corresponding equation of {{harvtxt|Jonquière|1889|loc=eq. 1}} and {{harvtxt|Erdélyi et al.|1981|loc=§ 1.11-18}} is again not correct.) * The polylogarithm with pure imaginary ''μ'' may be expressed in terms of the [[Clausen function]]s ''Ci''<sub>''s''</sub>(θ) and ''Si''<sub>''s''</sub>(θ), and vice versa ({{harvnb|Lewin|1958|loc=Ch. VII § 1.4}}; {{harvnb|Abramowitz|Stegun|1972|loc=§ 27.8}}):<math display="block">\operatorname{Li}_s(e^{\pm i \theta}) = Ci_s(\theta) \pm i Si_s(\theta).</math> * The [[inverse tangent integral]] {{math|''Ti''<sub>''s''</sub>(''z'')}} {{harv|Lewin|1958|loc=Ch. VII § 1.2}} can be expressed in terms of polylogarithms: <math display="block">\operatorname{Ti}_s(z) = {1 \over 2i} \left[ \operatorname{Li}_s(i z) - \operatorname{Li}_s(-i z) \right].</math> The relation in particular implies: <math display="block">\operatorname{Ti}_0(z) = {z \over 1+z^2}, \quad \operatorname{Ti}_1(z) = \arctan z, \quad \operatorname{Ti}_2(z) = \int_0^z {\arctan t \over t} dt, \quad \ldots~ \quad \operatorname{Ti}_{n+1}(z) = \int_0^z \frac{\operatorname{Ti}_n(t)}{t} dt,</math> which explains the function name. * The [[Legendre chi function]] ''χ''<sub>''s''</sub>(''z'') ({{harvnb|Lewin|1958|loc=Ch. VII § 1.1}}; {{harvnb|Boersma|Dempsey|1992}}) can be expressed in terms of polylogarithms: <math display="block"> \chi_s(z) = \tfrac {1}{2} \left[ \operatorname{Li}_s(z) - \operatorname{Li}_s(-z) \right].</math> * The polylogarithm of integer order can be expressed as a [[generalized hypergeometric function]]: <math display="block">\begin{align} \operatorname{Li}_n(z) &= z _{n+1}F_{n} (1,1,\dots,1; 2,2,\dots,2; z) & (n = 0,1,2,\ldots), \\ \operatorname{Li}_{-n}(z) &= z _{n}F_{n-1} (2,2,\dots,2; 1,1,\dots,1; z) & (n = 1,2,3,\ldots) ~. \end{align}</math> * In terms of the [[Riemann zeta function#Generalizations|incomplete zeta functions]] or "[[Debye function]]s" {{harv|Abramowitz|Stegun|1972|loc=§ 27.1}}: <math display="block"> Z_n(z) = {1 \over (n - 1)!} \int_z^\infty {t^{n-1} \over e^t-1} dt \qquad (n = 1,2,3,\ldots) , </math> the polylogarithm Li<sub>''n''</sub>(''z'') for positive integer n may be expressed as the finite sum {{harv|Wood|1992|loc=§16}}: <math display="block"> \operatorname{Li}_{n}(e^\mu) = \sum_{k=0}^{n-1} Z_{n-k}(-\mu) {\mu^k \over k!} \qquad (n = 1,2,3,\ldots) . </math> A remarkably similar expression relates the "Debye functions" ''Z''<sub>''n''</sub>(''z'') to the polylogarithm: <math display="block">Z_n(z) = \sum_{k=0}^{n-1} \operatorname{Li}_{n-k}(e^{-z}) {z^k \over k!} \qquad (n = 1,2,3,\ldots) .</math> * Using [[Lambert series]], if <math>J_s(n)</math> is [[Jordan's totient function]], then <math display="block"> \sum_{n=1}^\infty\frac{z^nJ_{-s}(n)}{1-z^n}=\operatorname{Li}_{s}(z).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)