Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polynomial hierarchy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Quantified Boolean formulae definition === For the existential/universal definition of the polynomial hierarchy, let {{mvar|L}} be a [[formal language|language]] (i.e. a [[decision problem]], a subset of {0,1}<sup>*</sup>), let {{mvar|p}} be a [[polynomial]], and define : <math> \exists^p L := \left\{ x \in \{0,1\}^* \ \left| \ \left( \exists w \in \{0,1\}^{\leq p(|x|)} \right) \langle x,w \rangle \in L \right. \right\}, </math> where <math>\langle x,w \rangle \in \{0,1\}^*</math> is some standard encoding of the pair of binary strings ''x'' and ''w'' as a single binary string. The language ''L'' represents a set of ordered pairs of strings, where the first string ''x'' is a member of <math>\exists^p L</math>, and the second string ''w'' is a "short" (<math>|w| \leq p(|x|) </math>) witness testifying that ''x'' is a member of <math>\exists^p L</math>. In other words, <math>x \in \exists^p L</math> if and only if there exists a short witness ''w'' such that <math> \langle x,w \rangle \in L </math>. Similarly, define : <math> \forall^p L := \left\{ x \in \{0,1\}^* \ \left| \ \left( \forall w \in \{0,1\}^{\leq p(|x|)} \right) \langle x,w \rangle \in L \right. \right\} </math> Note that [[De Morgan's laws]] hold: <math> \left( \exists^p L \right)^{\rm c} = \forall^p L^{\rm c} </math> and <math> \left( \forall^p L \right)^{\rm c} = \exists^p L^{\rm c} </math>, where ''L''<sup>c</sup> is the complement of ''L''. Let {{mathcal|C}} be a class of languages. Extend these operators to work on whole classes of languages by the definition :<math>\exists^\mathrm{P} \mathcal{C} := \left\{\exists^p L \ | \ p \text{ is a polynomial and } L \in \mathcal{C} \right\}</math> :<math>\forall^\mathrm{P} \mathcal{C} := \left\{\forall^p L \ | \ p \text{ is a polynomial and } L \in \mathcal{C} \right\}</math> Again, De Morgan's laws hold: <math> \mathrm{co} \exists^\mathrm{P} \mathcal{C} = \forall^\mathrm{P} \mathrm{co} \mathcal{C} </math> and <math> \mathrm{co} \forall^\mathrm{P} \mathcal{C} = \exists^\mathrm{P} \mathrm{co} \mathcal{C} </math>, where <math>\mathrm{co}\mathcal{C} = \left\{ L^c | L \in \mathcal{C} \right\}</math>. The classes '''[[NP (complexity)|NP]]''' and '''[[co-NP]]''' can be defined as <math> \mathrm{NP} = \exists^\mathrm{P} \mathrm{P} </math>, and <math> \mathrm{coNP} = \forall^\mathrm{P} \mathrm{P} </math>, where '''[[P (complexity)|P]]''' is the class of all feasibly (polynomial-time) decidable languages. The polynomial hierarchy can be defined recursively as :<math> \Sigma_0^\mathrm{P} := \Pi_0^\mathrm{P} := \mathrm{P} </math> :<math> \Sigma_{k+1}^\mathrm{P} := \exists^\mathrm{P} \Pi_k^\mathrm{P} </math> :<math> \Pi_{k+1}^\mathrm{P} := \forall^\mathrm{P} \Sigma_k^\mathrm{P} </math> Note that <math> \mathrm{NP} = \Sigma_1^\mathrm{P} </math>, and <math> \mathrm{coNP} = \Pi_1^\mathrm{P} </math>. This definition reflects the close connection between the polynomial hierarchy and the [[arithmetical hierarchy]], where '''[[Decidable language|R]]''' and '''[[Recursively enumerable language|RE]]''' play roles analogous to '''[[P (complexity)|P]]''' and '''[[NP (complexity)|NP]]''', respectively. The [[analytic hierarchy]] is also defined in a similar way to give a hierarchy of subsets of the [[Baire space (set theory)|real number]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)