Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-counting function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Exact form=== For {{math|''x'' > 1}} let {{math|''π''<sub>0</sub>(''x'') {{=}} ''π''(''x'') − {{sfrac|1|2}}}} when {{mvar|x}} is a prime number, and {{math|''π''<sub>0</sub>(''x'') {{=}} ''π''(''x'')}} otherwise. [[Bernhard Riemann]], in his work ''[[On the Number of Primes Less Than a Given Magnitude]]'', proved that {{math|''π''<sub>0</sub>(''x'')}} is equal to<ref>{{Cite web|url=http://ism.uqam.ca/~ism/pdf/Hutama-scientific%20report.pdf|title=Implementation of Riemann's Explicit Formula for Rational and Gaussian Primes in Sage|last=Hutama|first=Daniel|date=2017|website=Institut des sciences mathématiques}}</ref>[[File:Riemann Explicit Formula.gif|thumb|Riemann's explicit formula using the first 200 non-trivial zeros of the zeta function|402x402px]] <math display="block">\pi_0(x) = \operatorname{R}(x) - \sum_{\rho}\operatorname{R}(x^\rho),</math> where <math display=block>\operatorname{R}(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \operatorname{li}\left(x^{1/n}\right),</math> {{math|''μ''(''n'')}} is the [[Möbius function]], {{math|li(''x'')}} is the [[logarithmic integral function]], {{mvar|ρ}} indexes every zero of the Riemann zeta function, and {{math|li(''x''<sup>{{sfrac|''ρ''|''n''}}</sup>)}} is not evaluated with a [[branch cut]] but instead considered as {{math|Ei({{sfrac|''ρ''|''n''}} log ''x'')}} where {{math|Ei(''x'')}} is the [[exponential integral]]. If the trivial zeros are collected and the sum is taken ''only'' over the non-trivial zeros {{mvar|ρ}} of the Riemann zeta function, then {{math|''π''<sub>0</sub>(''x'')}} may be approximated by<ref name="RieselGohl">{{Cite journal | author1-link=Hans Riesel | last1=Riesel | first1=Hans | last2=Göhl | first2=Gunnar | title=Some calculations related to Riemann's prime number formula | doi=10.2307/2004630 | mr=0277489 | year=1970 | journal=[[Mathematics of Computation]] | issn=0025-5718 | volume=24 | issue=112 | pages=969–983 | jstor=2004630 | publisher=American Mathematical Society |url=https://www.ams.org/journals/mcom/1970-24-112/S0025-5718-1970-0277489-3/S0025-5718-1970-0277489-3.pdf }}</ref> <math display=block>\pi_0(x) \approx \operatorname{R}(x) - \sum_{\rho}\operatorname{R}\left(x^\rho\right) - \frac{1}{\log x} + \frac{1}{\pi} \arctan{\frac{\pi}{\log x}} .</math> The [[Riemann hypothesis]] suggests that every such non-trivial zero lies along {{math|1=Re(''s'') = {{sfrac|1|2}}}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)