Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Prime-factor FFT algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== As algebra isomorphisms === PFA can be stated in a high-level way in terms of [[Algebra homomorphism|algebra isomorphisms]]. We first recall that for a commutative ring <math>R</math> and a [[group isomorphism]] from <math>G</math> to {{tmath|1= \textstyle \prod_d G_d }}, we have the following algebra isomorphism <math display="block">R[G] \cong \bigotimes_d R[G_d] ,</math> where <math>\bigotimes</math> refers to the [[tensor product of algebras]]. To see how PFA works, we choose <math>G = (\Z_n, +, 0)</math> and <math>G_d = (\Z_{n_d}, +, 0)</math> be [[additive group]]s. We also identify <math>R[G]</math> as <math display="inline">\frac{R[x]}{\langle x^n - 1 \rangle}</math> and <math>R[G_d]</math> as {{tmath|1= \textstyle \frac{R[x_d]}{\langle x_d^{n_d} - 1 \rangle} }}. Choosing <math>\eta = a \mapsto (a \bmod n_d)</math> as the group isomorphism {{tmath|1= \textstyle G \cong \prod_d G_d }}, we have the algebra isomorphism <math display="inline">\eta^* : R[G] \cong \bigotimes_d R[G_d]</math>, or alternatively, <math display="block"> \eta^* : \frac{R[x]}{\langle x^n - 1 \rangle} \cong \bigotimes_d \frac{R[x_d]}{\langle x_d^{n_d} - 1 \rangle} .</math> Now observe that <math>\text{DFT}_{\omega_n}</math> is actually an algebra isomorphism from <math display="inline">\frac{R[x]}{\langle x^n - 1 \rangle}</math> to <math display="inline">\prod_i \frac{R[x]}{\langle x - \omega_n^i \rangle}</math> and each <math>\text{DFT}_{\omega_{n_d}}</math> is an algebra isomorphism from <math display="inline">\frac{R[x]}{\langle {x_d}^{n_d} - 1 \rangle}</math> to <math display="inline">\prod_{i_d} \frac{R[x_d]}{\langle x_d - \omega_{n_d}^{i_d} \rangle}</math>, we have an algebra isomorphism <math>\eta'</math> from <math display="inline">\bigotimes_d \prod_{i_d} \frac{R[x_d]}{\langle x_d - \omega_{n_d}^{i_d} \rangle}</math> to <math display="inline">\prod_i \frac{R[x]}{\langle x - \omega_n^i \rangle}</math>. What PFA tells us is that <math display="inline">\text{DFT}_{\omega_n} = \eta' \circ \bigotimes_d \text{DFT}_{\omega_{n_d}} \circ \eta^*</math> where <math>\eta^*</math> and <math>\eta'</math> are re-indexing without actual arithmetic in <math>R</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)