Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Primorial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characteristics == * Let {{mvar|p}} and {{mvar|q}} be two adjacent prime numbers. Given any <math>n \in \mathbb{N}</math>, where <math>p\leq n<q</math>: :<math>n\#=p\#</math> * The fact that the [[binomial coefficient]] <math>\tbinom{2n}{n}</math> is divisible by every prime between <math>n+1</math> and <math>2n</math>, together with the inequality <math>\tbinom{2n}{n} \leq 2^{n}</math>, allows to derive the upper bound:<ref>G. H. Hardy, E. M. Wright: ''An Introduction to the Theory of Numbers''. 4th Edition. Oxford University Press, Oxford 1975. {{ISBN|0-19-853310-1}}.<br />Theorem 415, p. 341</ref> :<math>n\#\leq 4^n</math>. Notes: # Using elementary methods, mathematician Denis Hanson showed that <math>n\#\leq 3^n</math><ref>{{Cite journal |last=Hanson |first=Denis |date=March 1972 |title=On the Product of the Primes |journal=[[Canadian Mathematical Bulletin]] |volume=15 |issue=1 |pages=33β37 |doi=10.4153/cmb-1972-007-7|doi-access=free |issn=0008-4395}}</ref> # Using more advanced methods, Rosser and Schoenfeld showed that <math>n\#\leq (2.763)^n</math><ref name="RosserSchoenfeld1962">{{Cite journal |last1=Rosser |first1=J. Barkley |last2=Schoenfeld |first2=Lowell |date=1962-03-01 |title=Approximate formulas for some functions of prime numbers |journal=Illinois Journal of Mathematics |volume=6 |issue=1 |doi=10.1215/ijm/1255631807 |issn=0019-2082|doi-access=free }}</ref> # Rosser and Schoenfeld in Theorem 4, formula 3.14, showed that for <math>n \ge 563</math>, <math>n\#\geq (2.22)^n</math><ref name="RosserSchoenfeld1962"/> * Furthermore: :<math>\lim_{n \to \infty}\sqrt[n]{n\#} = e </math> :For <math>n<10^{11}</math>, the values are smaller than [[e (mathematical constant)|{{mvar|e}}]],<ref>L. Schoenfeld: ''Sharper bounds for the Chebyshev functions <math>\theta(x)</math> and <math>\psi(x)</math>''. II. ''Math. Comp.'' Vol. 34, No. 134 (1976) 337β360; p. 359.<br />Cited in: G. Robin: ''Estimation de la fonction de Tchebychef <math>\theta</math> sur le {{mvar|k}}-ieme nombre premier et grandes valeurs de la fonction <math>\omega(n)</math>, nombre de diviseurs premiers de {{mvar|n}}''. ''Acta Arithm.'' XLII (1983) 367β389 ([http://matwbn.icm.edu.pl/ksiazki/aa/aa42/aa4242.pdf PDF 731KB]); p. 371</ref> but for larger {{mvar|n}}, the values of the function exceed the limit {{mvar|e}} and oscillate infinitely around {{mvar|e}} later on. * Let <math>p_k</math> be the {{mvar|k}}-th prime, then <math>p_k\#</math> has exactly <math>2^k</math> divisors. For example, <math>2\#</math> has 2 divisors, <math>3\#</math> has 4 divisors, <math>5\#</math> has 8 divisors and <math>97\#</math> already has <math>2^{25}</math> divisors, as 97 is the 25th prime. * The sum of the reciprocal values of the primorial [[Convergent series|converges]] towards a constant :<math>\sum_{p\,\in \,\mathbb{P}} {1 \over p\#} = {1 \over 2} + {1 \over 6} + {1 \over 30} + \ldots = 0{.}7052301717918\ldots</math> :The [[Engel expansion]] of this number results in the sequence of the prime numbers (See {{OEIS|A064648}}) * Euclid's proof of his [[Euclid's theorem|theorem on the infinitude of primes]] can be paraphrased by saying that, for any prime <math>p</math>, the number <math>p\# +1</math> has a prime divisor not contained in the set of primes less than or equal to <math>p</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)