Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Principal bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Trivial bundle and sections === Over an open ball <math>U \subset \mathbb{R}^n</math>, or <math>\mathbb{R}^n</math>, with induced coordinates <math>x_1,\ldots,x_n</math>, any principal <math>G</math>-bundle is isomorphic to a trivial bundle<blockquote><math>\pi:U\times G \to U</math></blockquote>and a smooth section <math>s \in \Gamma(\pi)</math> is equivalently given by a (smooth) function <math>\hat{s}: U \to G</math> since<blockquote><math>s(u) = (u,\hat{s}(u)) \in U\times G </math></blockquote>for some smooth function. For example, if <math>G=U(2)</math>, the Lie group of <math>2\times 2</math> [[Unitary matrix|unitary matrices]], then a section can be constructed by considering four real-valued functions<blockquote><math>\phi(x),\psi(x),\Delta(x),\theta(x) : U \to \mathbb{R}</math></blockquote>and applying them to the parameterization <math display="block">\hat{s}(x) = e^{i\phi(x)}\begin{bmatrix} e^{i\psi(x)} & 0 \\ 0 & e^{-i\psi(x)} \end{bmatrix} \begin{bmatrix} \cos \theta(x) & \sin \theta(x) \\ -\sin \theta(x) & \cos \theta(x) \\ \end{bmatrix} \begin{bmatrix} e^{i\Delta(x)} & 0 \\ 0 & e^{-i\Delta(x)} \end{bmatrix}. </math>This same procedure valids by taking a parameterization of a collection of matrices defining a Lie group <math>G</math> and by considering the set of functions from a patch of the base space <math>U\subset X</math> to <math>\mathbb{R}</math> and inserting them into the parameterization.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)