Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Property B
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Asymptotics of ''m''(''n'') === Erdős (1963) proved that for any collection of fewer than <math>2^{n-1}</math> sets of size ''n'', there exists a 2-coloring in which all set are bichromatic. The proof is simple: Consider a random coloring. The probability that an arbitrary set is monochromatic is <math>2^{-n+1}</math>. By a [[union bound]], the probability that there exist a monochromatic set is less than <math>2^{n-1}2^{-n+1} = 1</math>. Therefore, there exists a good coloring. Erdős (1964) showed the existence of an ''n''-uniform hypergraph with <math>O(2^n \cdot n^2)</math> hyperedges which does not have property B (i.e., does not have a 2-coloring in which all hyperedges are bichromatic), establishing an upper bound. Schmidt (1963) proved that every collection of at most <math>n/(n+4)\cdot 2^n</math> sets of size ''n'' has property B. Erdős and Lovász conjectured that <math>m(n) = \theta(2^n \cdot n)</math>. Beck in 1978 improved the lower bound to <math>m(n) = \Omega(n^{1/3 - \epsilon}2^n)</math>, where <math>\epsilon</math> is an arbitrary small positive number. In 2000, Radhakrishnan and Srinivasan improved the lower bound to <math>m(n) = \Omega(2^n \cdot \sqrt{n / \log n})</math>. They used a clever probabilistic algorithm.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)