Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic reciprocity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Patterns among quadratic residues=== Let ''p'' be an odd prime. A number modulo ''p'' is a [[quadratic residue]] whenever it is congruent to a square (mod ''p''); otherwise it is a quadratic non-residue. ("Quadratic" can be dropped if it is clear from the context.) Here we exclude zero as a special case. Then as a consequence of the fact that the multiplicative group of a [[finite field]] of order ''p'' is cyclic of order ''p-1'', the following statements hold: *There are an equal number of quadratic residues and non-residues; and *The product of two quadratic residues is a residue, the product of a residue and a non-residue is a non-residue, and the product of two non-residues is a residue. For the avoidance of doubt, these statements do ''not'' hold if the modulus is not prime. For example, there are only 3 quadratic residues (1, 4 and 9) in the multiplicative group modulo 15. Moreover, although 7 and 8 are quadratic non-residues, their product 7x8 = 11 is also a quadratic non-residue, in contrast to the prime case. Quadratic residues appear as entries in the following table, indexed by the row number as modulus and column number as root: {| class="wikitable" style="text-align:right;" cellpadding="2" |+ Squares mod primes |- ! ''n'' | 1||2|| 3|| 4||5|| 6|| 7|| 8 ||9 ||10|| 11|| 12|| 13|| 14 ||15|| 16|| 17|| 18 ||19|| 20|| 21|| 22|| 23|| 24 ||25 |- ! ''n''<sup>2</sup> |1 |4 |9 |16 |25 |36 |49 |64 |81 |100|| 121|| 144|| 169|| 196 ||225|| 256|| 289|| 324 ||361 || 400|| 441|| 484|| 529|| 576 ||625 |- ! mod 3 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 |- ! mod 5 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 |- ! mod 7 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 |- ! mod 11 | 1 || 4 || 9 || 5 || 3 || 3 || 5 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 5 || 3 || 3 || 5 || 9 || 4 || 1 || 0 | 1 || 4 || 9 |- ! mod 13 | 1 || 4 || 9 || 3 || 12 || 10 || 10 || 12 || 3 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 3 || 12 || 10 || 10 || 12 || 3 || 9 || 4 || 1 |- ! mod 17 | 1 || 4 || 9 || 16 || 8 || 2 || 15 || 13 || 13 || 15 || 2 || 8 || 16 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 16 || 8 || 2 || 15 || 13 |- ! mod 19 | 1 || 4 || 9 || 16 || 6 || 17 || 11 || 7 || 5 || 5 || 7 || 11 || 17 || 6 || 16 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 16 || 6 || 17 |- ! mod 23 | 1 || 4 || 9 || 16 || 2 || 13 || 3 || 18 || 12 || 8 || 6 || 6 || 8 || 12 ||18 || 3 || 13 || 2 || 16 || 9 || 4 || 1 || 0 | 1 || 4 |- ! mod 29 | 1 ||4|| 9|| 16|| 25|| 7|| 20|| 6 ||23 ||13|| 5|| 28|| 24|| 22 ||22|| 24|| 28|| 5 ||13 || 23|| 6|| 20|| 7|| 25 ||16 |- ! mod 31 | 1 ||4|| 9|| 16||25|| 5|| 18|| 2 ||19 ||7|| 28|| 20|| 14|| 10 ||8|| 8|| 10|| 14 ||20 || 28|| 7|| 19|| 2|| 18 ||5 |- ! mod 37 | 1 ||4|| 9|| 16||25|| 36|| 12|| 27 ||7 ||26||10|| 33|| 21|| 11 ||3|| 34|| 30|| 28 ||28 || 30|| 34|| 3|| 11|| 21 ||33 |- ! mod 41 | 1 ||4|| 9|| 16||25|| 36|| 8|| 23 ||40 ||18||39||21|| 5|| 32 ||20|| 10|| 2|| 37 ||33 || 31|| 31|| 33|| 37|| 2 ||10 |- ! mod 43 | 1 ||4|| 9|| 16||25|| 36|| 6|| 21 ||38 ||14|| 35|| 15|| 40|| 24 ||10|| 41|| 31|| 23 ||17 || 13|| 11 || 11|| 13|| 17 ||23 |- ! mod 47 | 1 ||4|| 9|| 16||25|| 36|| 2|| 17 ||34 ||6|| 27|| 3|| 28|| 8 ||37||21||7||42||32||24||18|| 14|| 12 || 12 ||14 |} This table is complete for odd primes less than 50. To check whether a number ''m'' is a quadratic residue mod one of these primes ''p'', find ''a'' β‘ ''m'' (mod ''p'') and 0 β€ ''a'' < ''p''. If ''a'' is in row ''p'', then ''m'' is a residue (mod ''p''); if ''a'' is not in row ''p'' of the table, then ''m'' is a nonresidue (mod ''p''). The quadratic reciprocity law is the statement that certain patterns found in the table are true in general.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)