Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Random forest
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Preliminaries: decision tree learning=== {{main|Decision tree learning}} Decision trees are a popular method for various machine learning tasks. Tree learning is almost "an off-the-shelf procedure for data mining", say [[Trevor Hastie|Hastie]] ''et al.'', "because it is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features, and produces inspectable models. However, they are seldom accurate".<ref name="elemstatlearn">{{ElemStatLearn}}</ref>{{rp|352}} In particular, trees that are grown very deep tend to learn highly irregular patterns: they [[overfitting|overfit]] their training sets, i.e. have [[Bias–variance tradeoff|low bias, but very high variance]]. Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance.<ref name="elemstatlearn"/>{{rp|587–588}} This comes at the expense of a small increase in the bias and some loss of interpretability, but generally greatly boosts the performance in the final model.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)