Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rayleigh distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The [[moment (mathematics)|raw moments]] are given by: : <math>\mu_j = \sigma^j2^{j/2}\,\Gamma\left(1 + \frac j 2\right),</math> where <math>\Gamma(z)</math> is the [[gamma function]]. The [[mean]] of a Rayleigh random variable is thus <!--(<math>k=1, \Gamma\left(\tfrac32\right) = \tfrac12 \sqrt{\pi}\,</math>)-->: :<math>\mu(X) = \sigma \sqrt{\frac{\pi}{2}}\ \approx 1.253\ \sigma.</math> The [[standard deviation]] of a Rayleigh random variable is: :<math>\operatorname{std}(X) = \sqrt{\left (2-\frac{\pi}{2}\right)} \sigma \approx 0.655\ \sigma</math> The [[variance]] of a Rayleigh random variable is : :<math>\operatorname{var}(X) = \mu_2-\mu_1^2 = \left(2-\frac{\pi}{2}\right) \sigma^2 \approx 0.429\ \sigma^2</math> The [[mode (statistics)|mode]] is <math>\sigma,</math> and the maximum pdf is :<math> f_{\max} = f(\sigma;\sigma) = \frac{1}{\sigma} e^{-1/2} \approx \frac{0.606}{\sigma}.</math> The [[skewness]] is given by: :<math>\gamma_1 = \frac{2\sqrt{\pi}(\pi - 3)}{(4 - \pi)^{3/2}} \approx 0.631</math> The excess [[kurtosis]] is given by: :<math>\gamma_2 = -\frac{6\pi^2 - 24\pi + 16}{(4 - \pi)^2} \approx 0.245</math> The [[characteristic function (probability theory)|characteristic function]] is given by: :<math>\varphi(t) = 1 - \sigma te^{-\frac{1}{2}\sigma^2t^2}\sqrt{\frac{\pi}{2}} \left[\operatorname{erfi}\left(\frac{\sigma t}{\sqrt{2}}\right) - i\right]</math> where <math>\operatorname{erfi}(z)</math> is the imaginary [[error function]]. The [[moment generating function]] is given by :<math> M(t) = 1 + \sigma t\,e^{\frac{1}{2}\sigma^2t^2}\sqrt{\frac{\pi}{2}} \left[\operatorname{erf}\left(\frac{\sigma t}{\sqrt{2}}\right) + 1\right]</math> where <math>\operatorname{erf}(z)</math> is the [[error function]]. ===Differential entropy=== The [[differential entropy]] is given by{{Citation needed|date=April 2013}} :<math>H = 1 + \ln\left(\frac \sigma {\sqrt{2}}\right) + \frac \gamma 2 </math> where <math>\gamma</math> is the [[Euler–Mascheroni constant]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)