Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rectangular function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Fourier transform of the rectangular function== [[File:Sinc_function_(normalized).svg|thumb|400px|right|Plot of normalized <math>\operatorname{sinc}(x)</math> function (i.e. <math>\operatorname{sinc}(\pi x)</math>) with its spectral frequency components.]] The [[Fourier transform#Tables of important Fourier transforms|unitary Fourier transforms]] of the rectangular function are<ref name="wolfram"/> <math display="block">\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i 2\pi f t} \, dt =\frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(\pi f) =\operatorname{sinc}_\pi(f),</math> using ordinary frequency {{mvar|f}}, where [[sinc function|<math>\operatorname{sinc}_\pi</math>]] is the normalized form<ref>Wolfram MathWorld, https://mathworld.wolfram.com/SincFunction.html</ref> of the [[sinc function]] and <math display="block">\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i \omega t} \, dt =\frac{1}{\sqrt{2\pi}}\cdot \frac{\sin\left(\omega/2 \right)}{\omega/2} =\frac{1}{\sqrt{2\pi}} \cdot \operatorname{sinc}\left(\omega/2 \right), </math> using angular frequency <math>\omega</math>, where [[sinc function|<math>\operatorname{sinc}</math>]] is the unnormalized form of the [[sinc function]]. For <math>\operatorname{rect} (x/a)</math>, its Fourier transform is<math display="block">\int_{-\infty}^\infty \operatorname{rect}\left(\frac{t}{a}\right)\cdot e^{-i 2\pi f t} \, dt =a \frac{\sin(\pi af)}{\pi af} = a\ \operatorname{sinc}_\pi{(a f)}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)