Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reflexive relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Related definitions === There are several definitions related to the reflexive property. The relation <math>R</math> is called: :; '''{{visible anchor|irreflexive|Irreflexivity|Irreflexive relation}}''', '''{{visible anchor|anti-reflexive|Anti-reflexivity|Anti-reflexive relation}}''' or '''{{visible anchor|aliorelative}}''':<ref>This term is due to [[C S Peirce]]; see {{harvnb|Russell|1920|p=32}}. Russell also introduces two equivalent terms ''to be contained in'' or ''imply diversity''.</ref> if it does not relate any element to itself; that is, if <math>x R x</math> holds for no <math>x \in X.</math> A relation is irreflexive [[if and only if]] its [[Complementary relation|complement]] in <math>X \times X</math> is reflexive. An [[asymmetric relation]] is necessarily irreflexive. A transitive and irreflexive relation is necessarily asymmetric. :; '''{{visible anchor|left quasi-reflexive|Left quasi-reflexivity}}''' : if whenever <math>x, y \in X</math> are such that <math>x R y,</math> then necessarily <math>x R x.</math><ref name="Britannica">The [https://www.britannica.com/topic/formal-logic/Logical-manipulations-in-LPC#ref534730 Encyclopædia Britannica] calls this property quasi-reflexivity.</ref> :; '''{{visible anchor|right quasi-reflexive|Right quasi-reflexivity|Right quasi-reflexive relation}}''' : if whenever <math>x, y \in X</math> are such that <math>x R y,</math> then necessarily <math>y R y.</math> :; '''{{visible anchor|quasi-reflexive|Quasi-reflexivity}}''' : if every element that is part of some relation is related to itself. Explicitly, this means that whenever <math>x, y \in X</math> are such that <math>x R y,</math> then necessarily <math>x R x</math> and <math>y R y.</math> Equivalently, a binary relation is quasi-reflexive if and only if it is both left quasi-reflexive and right quasi-reflexive. A relation <math>R</math> is quasi-reflexive if and only if its [[symmetric closure]] <math>R \cup R^{\operatorname{T}}</math> is left (or right) quasi-reflexive. :; '''[[Antisymmetric relation|antisymmetric]]''' : if whenever <math>x, y \in X</math> are such that <math>x R y \text{ and } y R x,</math> then necessarily <math>x = y.</math> :; '''{{visible anchor|coreflexive|Coreflexivity|Coreflexive relation}}''' : if whenever <math>x, y \in X</math> are such that <math>x R y,</math> then necessarily <math>x = y.</math>{{sfn|ps=|Fonseca de Oliveira|Pereira Cunha Rodrigues|2004|p=337}} A relation <math>R</math> is coreflexive if and only if its symmetric closure is [[Antisymmetric relation|anti-symmetric]]. A reflexive relation on a nonempty set <math>X</math> can neither be irreflexive, nor [[Asymmetric relation|asymmetric]] (<math>R</math> is called {{em|asymmetric}} if <math>x R y</math> implies not <math>y R x</math>), nor [[antitransitive]] (<math>R</math> is {{em|antitransitive}} if <math>x R y \text{ and } y R z</math> implies not <math>x R z</math>).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)