Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Renormalization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A loop divergence === [[Image:Loop-diagram.png|thumb|upright=1.1|Figure 2. A diagram contributing to electron–electron scattering in QED. The loop has an ultraviolet divergence.]] The diagram in Figure 2 shows one of the several one-loop contributions to electron–electron scattering in QED. The electron on the left side of the diagram, represented by the solid line, starts out with 4-momentum {{math|''p<sup>μ</sup>''}} and ends up with 4-momentum {{math|''r<sup>μ</sup>''}}. It emits a virtual photon carrying {{math|''r<sup>μ</sup>'' − ''p<sup>μ</sup>''}} to transfer energy and momentum to the other electron. But in this diagram, before that happens, it emits another virtual photon carrying 4-momentum {{math|''q<sup>μ</sup>''}}, and it reabsorbs this one after emitting the other virtual photon. Energy and momentum conservation do not determine the 4-momentum {{math|''q<sup>μ</sup>''}} uniquely, so all possibilities contribute equally and we must integrate. This diagram's amplitude ends up with, among other things, a factor from the loop of <math display="block">-ie^3 \int \frac{d^4 q}{(2\pi)^4} \gamma^\mu \frac{i (\gamma^\alpha (r - q)_\alpha + m)}{(r - q)^2 - m^2 + i \epsilon} \gamma^\rho \frac{i (\gamma^\beta (p - q)_\beta + m)}{(p - q)^2 - m^2 + i \epsilon} \gamma^\nu \frac{-i g_{\mu\nu}}{q^2 + i\epsilon}.</math> The various {{math|''γ<sup>μ</sup>''}} factors in this expression are [[gamma matrices]] as in the covariant formulation of the [[Dirac equation]]; they have to do with the spin of the electron. The factors of {{mvar|e}} are the electric coupling constant, while the <math>i\epsilon</math> provide a heuristic definition of the contour of integration around the poles in the space of momenta. The important part for our purposes is the dependency on {{math|''q<sup>μ</sup>''}} of the three big factors in the integrand, which are from the [[propagator]]s of the two electron lines and the photon line in the loop. This has a piece with two powers of {{math|''q<sup>μ</sup>''}} on top that dominates at large values of {{math|''q<sup>μ</sup>''}} (Pokorski 1987, p. 122): <math display="block">e^3 \gamma^\mu \gamma^\alpha \gamma^\rho \gamma^\beta \gamma_\mu \int \frac{d^4 q}{(2\pi)^4} \frac{q_\alpha q_\beta}{(r - q)^2 (p - q)^2 q^2}.</math> This integral is divergent and infinite, unless we cut it off at finite energy and momentum in some way. Similar loop divergences occur in other quantum field theories.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)