Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rhumb line
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematical description== For a sphere of radius 1, the azimuthal angle {{mvar|λ}}, the polar angle {{math|−{{sfrac|π|2}} ≤ ''φ'' ≤ {{sfrac|π|2}}}} (defined here to correspond to latitude), and [[Cartesian coordinate system#Representing a vector in the standard basis|Cartesian unit vectors]] {{math|'''i'''}}, {{math|'''j'''}}, and {{math|'''k'''}} can be used to write the radius vector {{math|'''r'''}} as :<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi}) \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi}) \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, .</math> [[Orthogonality#Euclidean vector spaces|Orthogonal unit vectors]] in the azimuthal and polar directions of the sphere can be written :<math>\begin{align} \boldsymbol{\hat\lambda}(\lambda,\varphi) &= \sec{\varphi} \frac{\partial\mathbf{r}}{\partial\lambda} = (-\sin{\lambda}) \mathbf{i} + (\cos{\lambda}) \mathbf{j} \, , \\[8pt] \boldsymbol{\hat\varphi}(\lambda,\varphi) &= \frac{\partial\mathbf{r}}{\partial\varphi} = (-\cos{\lambda} \cdot \sin{\varphi}) \mathbf{i} + (-\sin{\lambda} \cdot \sin{\varphi}) \mathbf{j} + (\cos{\varphi}) \mathbf{k} \, , \end{align}</math> which have the [[Dot product#Geometric definition|scalar products]] :<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, .</math> {{math|'''λ̂'''}} for constant {{mvar|φ}} traces out a parallel of latitude, while {{math|'''φ̂'''}} for constant {{mvar|λ}} traces out a meridian of longitude, and together they generate a plane tangent to the sphere. The unit vector :<math>\mathbf{\boldsymbol{\hat\beta}}(\lambda,\varphi) = (\sin{\beta}) \boldsymbol{\hat\lambda} + (\cos{\beta}) \boldsymbol{\hat\varphi}</math> has a constant angle {{mvar|β}} with the unit vector {{math|'''φ̂'''}} for any {{mvar|λ}} and {{mvar|φ}}, since their scalar product is :<math>\boldsymbol{\hat\beta} \cdot \boldsymbol{\hat\varphi} = \cos{\beta} \, .</math> A loxodrome is defined as a curve on the sphere that has a constant angle {{mvar|β}} with all meridians of longitude, and therefore must be parallel to the unit vector {{math|'''β̂'''}}. As a result, a differential length {{mvar|ds}} along the loxodrome will produce a differential displacement :<math>\begin{align} d\mathbf{r} &= \boldsymbol{\hat\beta} \, ds \\[8px] \frac{\partial\mathbf{r}}{\partial\lambda} \, d\lambda + \frac{\partial\mathbf{r}}{\partial\varphi} \, d\varphi &= \bigl((\sin{\beta}) \, \boldsymbol{\hat\lambda} + (\cos{\beta}) \, \boldsymbol{\hat\varphi}\bigr) ds \\[8px] (\cos{\varphi}) \, d\lambda \, \boldsymbol{\hat\lambda} + d\varphi \, \boldsymbol{\hat\varphi} &= (\sin{\beta}) \, ds \, \boldsymbol{\hat\lambda} + (\cos{\beta}) \, ds \, \boldsymbol{\hat\varphi} \\[8px] ds &= \frac{\cos{\varphi} }{\sin{\beta}} \, d\lambda = \frac{d\varphi}{\cos{\beta}} \\[8px] \frac{d\lambda}{d\varphi} &= \tan{\beta} \cdot \sec{\varphi} \\[8px] \lambda(\varphi\,|\,\beta,\lambda_0,\varphi_0) &= \tan\beta \cdot \big( \operatorname{gd}^{-1}\varphi - \operatorname{gd}^{-1}\varphi_0 \big) + \lambda_0 \\[8px] \varphi(\lambda\,|\,\beta,\lambda_0,\varphi_0) &= \operatorname{gd} \big((\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0\big) \end{align}</math> where <math>\operatorname{gd}</math> and <math>\operatorname{gd}^{-1}</math> are the [[Gudermannian function]] and its inverse, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi),</math> and <math>\operatorname{arsinh}</math> is the [[inverse hyperbolic functions|inverse hyperbolic sine]]. With this relationship between {{mvar|λ}} and {{mvar|φ}}, the radius vector becomes a parametric function of one variable, tracing out the loxodrome on the sphere: :<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} + \big(\sin{\lambda} \cdot \operatorname{sech}\psi\big) \mathbf{j} + \big(\tanh\psi\big) \mathbf{k} \, ,</math> where :<math>\psi \equiv (\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0 = \operatorname{gd}^{-1}\varphi</math> is the [[Latitude#Isometric latitude|isometric latitude]].<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref> In the Rhumb line, as the latitude tends to the poles, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}}, the isometric latitude {{math|arsinh(tan ''φ'') → ± ∞}}, and longitude {{mvar|λ}} increases without bound, circling the sphere ever so fast in a spiral towards the pole, while tending to a finite total arc length Δ{{math|s}} given by :<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math> ===Connection to the Mercator projection=== [[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|A rhumb line (blue) compared to a great-circle arc (red) between Lisbon, Portugal and Havana, Cuba. Top: orthographic projection. Bottom: Mercator projection.]] Let {{mvar|λ}} be the longitude of a point on the sphere, and {{mvar|φ}} its latitude. Then, if we define the map coordinates of the [[Mercator projection]] as :<math>\begin{align} x &= \lambda - \lambda_0 \, , \\ y &= \operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)\, , \end{align}</math> a loxodrome with constant [[Bearing (navigation)|bearing]] {{mvar|β}} from true north will be a straight line, since (using the expression in the previous section) :<math>y = m x</math> with a slope :<math>m=\cot\beta\,.</math> Finding the loxodromes between two given points can be done graphically on a Mercator map, or by solving a nonlinear system of two equations in the two unknowns {{math|1=''m'' = cot ''β''}} and {{math|''λ''<sub>0</sub>}}. There are infinitely many solutions; the shortest one is that which covers the actual longitude difference, i.e. does not make extra revolutions, and does not go "the wrong way around". The distance between two points {{math|Δ''s''}}, measured along a loxodrome, is simply the absolute value of the [[secant (trigonometry)|secant]] of the bearing (azimuth) times the north–south distance (except for [[circles of latitude]] for which the distance becomes infinite): :<math>\Delta s = R \, \big|(\varphi - \varphi_0)\cdot \sec \beta \big|</math> where {{math|R}} is one of the [[Earth radius#Global average radii|earth average radii]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)