Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Riemann's functional equation == This zeta function satisfies the [[functional equation]] <math display="block"> \zeta(s) = 2^s \pi^{s-1}\ \sin\left( \frac{\pi s}{2} \right)\ \Gamma(1-s)\ \zeta(1-s)\ ,</math> where {{math|Γ(''s'')}} is the [[gamma function]]. This is an equality of meromorphic functions valid on the whole [[complex plane]]. The equation relates values of the Riemann zeta function at the points {{mvar|s}} and {{math|1 − ''s''}}, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that {{math|''ζ''(''s'')}} has a simple zero at each even negative integer {{math|1=''s'' = −2''n''}}, known as the '''[[Triviality (mathematics)|trivial]] zeros''' of {{math|''ζ''(''s'')}}. When {{mvar|s}} is an even positive integer, the product {{nobr|{{math|sin({{sfrac| ''π s'' | 2 }}) Γ(1 − ''s'')}}}} on the right is non-zero because {{math|Γ(1 − ''s'')}} has a simple [[pole (complex analysis)|pole]], which cancels the simple zero of the sine factor. {{Collapse top|title=Proof of Riemann's functional equation}} A proof of the functional equation proceeds as follows: We observe that if <math>\ s > 0\ ,</math> then <math display="block"> \int_0^\infty x^{ \frac{1}{2} s - 1 } e^{-n^2\pi x}\ \operatorname{d} x\ =\ \frac{\ \Gamma\!\left( \frac{s}{2} \right)\ }{\ n^s\ \pi^{\frac{s}{2}}\ } ~.</math> As a result, if <math>\ s > 1\ </math> then <math display="block"> \frac{\ \Gamma\!\left(\frac{s}{2}\right)\ \zeta(s)\ }{\ \pi^{ \frac{s}{2} }\ }\ =\ \sum_{n=1}^\infty\ \int_0^\infty\ x^{{s\over 2}-1}\ e^{-n^2 \pi x}\ \operatorname{d} x\ =\ \int_0^\infty x^{{s\over 2}-1} \sum_{n=1}^\infty e^{-n^2 \pi x}\ \operatorname{d} x\ ,</math> with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on <math>s</math>). For convenience, let <math display="block"> \psi(x)\ := \ \sum_{n=1}^\infty\ e^{-n^2 \pi x} </math> which is a special case of the [[theta function]]. Because <math>e^{-n^2 \pi x}</math> and <math>\frac1\sqrt{x} e^{\frac{-n^2 \pi}{x}}</math> are [[Fourier transform#Definition|Fourier transform pairs]],<ref name='Damm-Johnsen'>{{cite book |last=Damm-Johnsenn |first=Håvard |title=Theta functions and their applications |year=2019 |pages=5|url=https://users.ox.ac.uk/~quee4127/theta.pdf}}</ref> then, by the [[Poisson summation formula]], we have <math display="block"> \sum_{n=-\infty}^\infty\ e^{ - n^2 \pi\ x }\ =\ \frac{ 1 }{\ \sqrt{x\ }\ }\ \sum_{n=-\infty}^\infty\ e^{ -\frac{\ n^2 \pi\ }{ x } }\ ,</math> so that <math display="block">\ 2\ \psi(x) + 1\ =\ \frac{ 1 }{\ \sqrt{x\ }\ } \left(\ 2\ \psi\!\left( \frac{ 1 }{ x } \right) + 1\ \right) ~.</math> Hence <math display="block"> \pi^{ -\frac{s}{2} }\ \Gamma\!\left( \frac{s}{2} \right)\ \zeta(s)\ =\ \int_0^1\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x + \int_1^\infty x^{ \frac{s}{2} - 1 } \psi(x)\ \operatorname{d} x ~.</math> The right side is equivalent to <math display="block"> \int_0^1 x^{ \frac{s}{2} - 1 } \left( \frac{ 1 }{\ \sqrt{x\ }\ }\ \psi\!\left( \frac{1}{x} \right) + \frac{ 1 }{\ 2 \sqrt{x\ }\ } - \frac{ 1 }{ 2 }\ \right) \ \operatorname{d} x + \int_1^\infty x^{{s\over 2}-1} \psi(x)\ \operatorname{d} x </math> or <math display="block"> \frac{ 1 }{\ s - 1\ } - \frac{ 1 }{\ s\ } + \int_0^1\ x^{ \frac{s}{2} - \frac{3}{2}}\ \psi\!\left( \frac{ 1 }{\ x\ } \right)\ \operatorname{d} x + \int_1^\infty\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x ~.</math> So <math display="block"> \pi^{ -\frac{ s }{ 2 } }\ \Gamma\!\left( \frac{\ s\ }{ 2 } \right)\ \zeta(s)\ =\ \frac{ 1 }{\ s ( s - 1 )\ } + \int_1^\infty\ \left( x^{ -\frac{ s }{ 2 } - \frac{ 1 }{ 2 } } + x^{ \frac{ s }{ 2 } - 1 } \right)\ \psi(x)\ \operatorname{d} x </math> which is convergent for all {{mvar|s}}, because <math>\psi(x)\to0</math> quicker than any power of {{mvar|x}} for <math>x>1</math>, so the integral converges. As the RHS remains the same if {{mvar|s}} is replaced by {{nobr|{{math| 1 − ''s''}} .}}, <math display="block"> \frac{\ \Gamma\!\left(\ \frac{s}{2}\ \right)\ \zeta\!\left(\ s\ \right)\ }{\ \pi^{ \frac{s}{2}\ }\ }\ =\ \frac{\ \Gamma\!\left(\ \frac{1}{2} - \frac{s}{2}\ \right)\ \zeta\!\left(\ 1 - s\ \right)\ }{\ \pi^{ \frac{1}{2} - \frac{s}{2} }\ } </math> which is the functional equation attributed to [[Bernhard Riemann]].<ref>{{cite book |first=E.C. |last=Titchmarsh |year=1986 |title=The Theory of the Riemann Zeta Function |edition=2nd |publisher=Oxford Science Publications |place=[[Oxford]], UK |isbn=0-19-853369-1 |pages=21–22 }}</ref> The functional equation above can be obtained using both the [[reflection formula]] and the [[Multiplication theorem#Gamma function–Legendre formula|duplication formula]]. First collect terms of <math>\pi</math>: <math display="block">\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math> Then multiply both sides by <math>\Gamma\left(1-\frac s2\right)</math> and use the reflection formula: <math display="block">\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math> <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math> Use the duplication formula with <math>z=\frac{1}{2} - \frac{s}{2}</math> <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^{1-1+s}\sqrt{\pi}\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math> so that <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^s\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-1}</math> {{Collapse bottom}} The functional equation was established by Riemann in his 1859 paper "[[On the Number of Primes Less Than a Given Magnitude]]" and used to construct the analytic continuation in the first place.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)