Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rodrigues' formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == {| class="wikitable" |+ !Family !<math>[a,b]</math> !<math>w</math> !<math>W</math> !<math>A</math> !<math>B</math> !<math>c_n</math> |- |[[Legendre polynomials|Legendre]] <math>P_n</math> |<math>[-1,+1]</math> |<math>1</math> |<math>1-x^2</math> |<math>-2x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{2^n n!}</math> |- |[[Chebyshev polynomials|Chebyshev]] (of the first kind) <math>T_n</math> |<math>[-1,+1]</math> |<math>1/\sqrt{1-x^2}</math> |<math>\sqrt{1-x^2}</math> |<math>-x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{(2n-1)!!}</math> |- |[[Chebyshev polynomials|Chebyshev]] (of the second kind) <math>U_n</math> |<math>[-1,+1]</math> |<math>\sqrt{1-x^2}</math> |<math>(1-x^2)^{3/2}</math> |<math>-3x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n (n+1)}{(2n+1)!!} </math> |- |[[Gegenbauer polynomials|Gegenbauer/ultraspherical]] <math>C_n^{(\alpha)}(x)</math> |<math>[-1,+1]</math> |<math>(1-x)^{\alpha-1/2} (1+x)^{\alpha-1/2} </math> |<math>(1-x)^{\alpha+1/2} (1+x)^{\alpha+1/2} </math> |<math>-(2\alpha + 1)x </math> |<math>1-x^2</math> |<math>\frac{(-1)^n (2\alpha)_n}{(\alpha+\frac{1}{2})_{n} 2^nn!}</math> |- |[[Jacobi polynomials|Jacobi]] <math>P_n^{(\alpha, \beta)}</math> |<math>[-1,+1]</math> |<math>(1-x)^\alpha (1+x)^\beta</math> |<math>(1-x)^{\alpha+1} (1+x)^{\beta +1}</math> |<math>( \beta - \alpha ) - (\alpha+ \beta + 2) x</math> |<math>1-x^2</math> |<math>\frac{(-1)^n}{2^nn!}</math> |- |associated [[Laguerre polynomials|Laguerre]] <math>L^{(\alpha)}_n</math> |<math>[0, \infty)</math> |<math>x^\alpha e^{-x}</math> |<math>x^{\alpha+1} e^{-x}</math> |<math>\alpha + 1 - x</math> |<math>x</math> |<math>\frac{1}{n!}</math> |- |[[Hermite polynomials|physicist's Hermite]] <math>H_n</math> |<math>(-\infty, +\infty)</math> |<math>e^{-x^2}</math> |<math>e^{-x^2}</math> |<math>-2x</math> |<math>1</math> |<math>(-1)^n</math> |} Similar formulae hold for many other sequences of [[orthogonal functions]] arising from [[Sturm–Liouville equation]]s, and these are also called the Rodrigues formula (or Rodrigues' type formula), especially when the resulting sequence is polynomial. === Legendre === Rodrigues stated his formula for Legendre polynomials <math>P_n</math>: <math display="block">P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \!\left[ (x^2 -1)^n \right]\!.</math><math display="block">(1 - x^2) P_n''(x) - 2 x P_n'(x) + n (n + 1) P_n(x) = 0</math>For Legendre polynomials, the generating function is defined as <math display="”block”">G(x,u)=\sum_{n=0}^\infty u^nP_n(x)</math>. The contour integral gives the '''Schläfli integral'''<ref>{{Citation |last=Schläfli |first=Ludwig |title=Über die zwei Heineschen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale |date=1881 |work=Gesammelte Mathematische Abhandlungen |pages=317–392 |url=https://doi.org/10.1007/978-3-0348-4116-0_27 |place=Basel |publisher=Springer Basel |isbn=978-3-0348-4044-6}}</ref> for Legendre polynomials:<math display="block">P_n(x) = \frac{1}{2\pi i 2^n} \oint_C \frac{(t^2-1)^n}{(t-x)^{n+1}} dt</math> Summing up the integrand,<math display="block">G(x,u) = \frac{1}{\sqrt{1 - 2ux + u^2}} \frac{1}{2\pi i} \oint_C \left(\frac{1}{t - t_-} - \frac{1}{t - t_+}\right) dt</math>where <math>t_\pm = \frac{1}{u} (1 \pm \sqrt{1 - 2ux + u^2})</math>. For small <math>u</math>, we have <math>t_- \approx x, t_+ \to \infty</math>, which heuristically suggests that the integral should be the residue around <math>t_-</math>, thus giving<math display="block">G(x,u) = \frac{1}{\sqrt{1 - 2ux + u^2}}</math> === Hermite === Physicist's [[Hermite polynomials]]:<math display="block">H_n(x)=(-1)^n e^{x^2} \frac{d^n}{dx^n} \!\left[e^{-x^2}\right] = \left(2x-\frac{d}{dx} \right)^n\cdot 1.</math><math display="block">H_n'' - 2xH_n' + 2nH_n = 0</math> The generating function is defined as<math display="block">G(x,u)=\sum_{n=0}^\infty \frac{H_n(x)}{n!}\, u^n.</math>The contour integral gives<math display="block"> H_n(x)=(-1)^n e^{x^2}\frac{n!}{2\pi i}\oint_C \frac{e^{-t^2}}{(t-x)^{n+1}}\,dt. </math><math display="block"> \begin{aligned} G(x,u) &= \sum_{n=0}^\infty \frac{(-1)^n e^{x^2}}{n!}\frac{n!}{2\pi i}\, u^n \oint_C \frac{e^{-t^2}}{(t-x)^{n+1}}\,dt \\ &= e^{x^2}\frac{1}{2\pi i}\oint_C e^{-t^2}\left(\sum_{n=0}^\infty \frac{(-1)^n u^n}{(t-x)^{n+1}}\right)dt \\ &= e^{x^2}\frac{1}{2\pi i}\oint_C e^{-t^2} \frac{1}{t-x+u}\\ &= e^{x^2}\, e^{-(x-u)^2} \\ & = e^{2xu- u^2} \end{aligned} </math> === Laguerre === For associated [[Laguerre polynomials]],<math display="block">L_n^{(\alpha)}(x) = {x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right) = \frac{x^{-\alpha}}{n!}\left( \frac{d}{dx}-1\right)^nx^{n+\alpha}.</math><math display="block">xL^{(\alpha)}_n(x)'' + (\alpha + 1 - x)L^{(\alpha)}_n(x)' + nL^{(\alpha)}_n(x) = 0~.</math> The generating function is defined as<math display="block">G(x,u) := \sum_{n=0}^\infty u^n L^{(\alpha)}_n(x)</math>By the same method, we have <math>G(x,u) = \frac{1}{(1-u)^{\alpha+1}} e^{-\frac{ux}{1-u}}</math>. === Jacobi === <math display="block"> P_n^{(\alpha,\beta)}(x) = \frac{(-1)^n}{2^n n!} (1-x)^{-\alpha} (1+x)^{-\beta} \frac{d^n}{dx^n} \left\{ (1-x)^\alpha (1+x)^\beta \left (1 - x^2 \right )^n \right\}.</math><math display="block"> \left (1-x^2 \right)P_n^{(\alpha,\beta)}{}'' + ( \beta-\alpha - (\alpha + \beta + 2)x )P_n^{(\alpha,\beta)}{}' + n(n+\alpha+\beta+1) P_n^{(\alpha,\beta)} = 0.</math> : <math> \sum_{n=0}^\infty P_n^{(\alpha,\beta)}(x) u^n = 2^{\alpha + \beta} R^{-1} (1 - u + R)^{-\alpha} (1 + u + R)^{-\beta}, </math> where <math display="inline"> R = \sqrt{1 - 2ux + u^2} </math>, and the [[Principal branch|branch]] of square root is chosen so that <math>R(x, 0) = 1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)