Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rodrigues' rotation formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Matrix notation == The linear transformation on <math>\mathbf{v}\isin\mathbb{R}^3 </math> defined by the cross product <math>\mathbf{v} \mapsto \mathbf{k} \times \mathbf{v} </math> is given in coordinates by representing {{math|'''v'''}} and {{math|'''k''' × '''v'''}} as [[row and column vectors|column matrices]]: :<math>\begin{bmatrix} (\mathbf{k}\times\mathbf{v})_x \\ (\mathbf{k}\times\mathbf{v})_y \\ (\mathbf{k}\times\mathbf{v})_z \end{bmatrix} = \begin{bmatrix} k_y v_z - k_z v_y \\ k_z v_x - k_x v_z \\ k_x v_y - k_y v_x \end{bmatrix} = \left[\begin{array}{rrr} 0\ \, & -k_z & k_y \\ k_z & 0\ \, & -k_x \\ -k_y & k_x & 0\ \, \end{array}\right] \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \,. </math> That is, the [[Transformation matrix|matrix of this linear transformation]] (with respect to standard coordinates) is the [[Cross product#Conversion to matrix multiplication|cross-product matrix]]: : <math>\mathbf{K}= \left[\begin{array}{rrr} 0\ \, & -k_z & k_y \\ k_z & 0\ \, & -k_x \\ -k_y & k_x & 0\ \, \end{array}\right]\,. </math> That is to say, : <math>\mathbf{k}\times\mathbf{v}=\mathbf{K}\mathbf{v}, \qquad\qquad \mathbf{k}\times(\mathbf{k}\times\mathbf{v})=\mathbf{K}(\mathbf{K}\mathbf{v}) = \mathbf{K}^2\mathbf{v} \,. </math> The last formula in the previous section can therefore be written as: :<math>\mathbf{v}_{\mathrm{rot}} = \mathbf{v} + (\sin\theta) \mathbf{K}\mathbf{v} + (1 - \cos\theta)\mathbf{K}^2\mathbf{v}\,.</math> Collecting terms allows the compact expression :<math>\mathbf{v}_\mathrm{rot} = \mathbf{R}\mathbf{v}</math> where {{Equation box 1 |indent =: |equation = <math>\mathbf{R} = \mathbf{I} + (\sin\theta) \mathbf{K} + (1-\cos\theta)\mathbf{K}^2</math> |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7 }} is the [[rotation matrix]] through an angle {{mvar|θ}} counterclockwise about the axis {{math|'''k'''}}, and {{math|'''I'''}} the {{nowrap|3 × 3}} [[identity matrix]].<ref>{{Cite web|last=Belongie|first=Serge|title=Rodrigues' Rotation Formula|url=https://mathworld.wolfram.com/RodriguesRotationFormula.html|access-date=2021-04-07|website=mathworld.wolfram.com|language=en}}</ref> This matrix {{math|'''R'''}} is an element of the rotation group {{math|SO(3)}} of {{math|ℝ<sup>3</sup>}}, and {{math|'''K'''}} is an element of the [[Lie algebra]] <math>\mathfrak{so}(3)</math> generating that Lie group (note that {{math|'''K'''}} is skew-symmetric, which characterizes <math>\mathfrak{so}(3)</math>). In terms of the matrix exponential, :<math>\mathbf{R} = \exp (\theta\mathbf{K})\,.</math> To see that the last identity holds, one notes that :<math>\mathbf{R}(\theta) \mathbf{R}(\phi) = \mathbf{R} (\theta+\phi), \quad \mathbf{R}(0) = \mathbf{I}\,, </math> characteristic of a [[one-parameter subgroup]], i.e. exponential, and that the formulas match for infinitesimal {{mvar|θ}}. For an alternative derivation based on this exponential relationship, see [[Axis–angle representation#Exponential map from so(3) to SO(3)|exponential map from <math>\mathfrak{so}(3)</math> to {{math|SO(3)}}]]. For the inverse mapping, see [[Axis–angle representation#Log map from SO(3) to so(3)|log map from {{math|SO(3)}} to <math>\mathfrak{so}(3)</math>]]. The above result can be written in index notation as follows. The elements of the matrix for an active rotation by an angle <math>\theta</math> about an axis {{math|'''n'''}} are given by :<math> R_{ij} = \cos\theta\, \delta_{ij} + (1 - \cos\theta) n_i n_j - \sin\theta\, \epsilon_{ijk} n_k. </math> Here, i, j, and k label the Cartesian components (x, y, z) or (1, 2, 3), <math>\delta_{ij}</math> and <math>\epsilon_{ijk}</math> are the Kronecker and Levi-Civita symbols, and there is an implicit sum on repeated indices. The [[Hodge dual]] of the rotation <math>\mathbf{R}</math> is just <math>\mathbf{R}^* = -\sin(\theta)\mathbf{k}</math> which enables the extraction of both the axis of rotation and the sine of the angle of the rotation from the rotation matrix itself, with the usual ambiguity, :<math>\begin{align} \sin(\theta) &= \sigma \left|\mathbf{R}^*\right| \\[3pt] \mathbf{k} &= -\frac{\sigma\mathbf{R}^*}{\left|\mathbf{R}^*\right|} \end{align}</math> where <math>\sigma = \pm 1</math>. The above simple expression results from the fact that the Hodge duals of <math>\mathbf{I}</math> and <math>\mathbf{K}^2</math> are zero, and <math>\mathbf{K}^* = -\mathbf{k}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)