Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotational transition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Rotational energy levels === The first term in the above nuclear wave function equation corresponds to [[kinetic energy]] of nuclei due to their radial motion. Term {{math|{{sfrac|{{bra|Φ<sub>''s''</sub>}} ''N''<sup>2</sup> {{ket|Φ<sub>''s''</sub>}}|2''μR''<sup>2</sup>}}}} represents rotational kinetic energy of the two nuclei, about their center of mass, in a given electronic state {{math|Φ<sub>''s''</sub>}}. Possible values of the same are different rotational energy levels for the molecule. [[Angular momentum|Orbital angular momentum]] for the rotational motion of nuclei can be written as <math display="block"> \mathbf N = \mathbf J - \mathbf L </math> where {{math|'''J'''}} is the total orbital angular momentum of the whole molecule and {{math|'''L'''}} is the orbital angular momentum of the electrons. If internuclear vector {{math|'''R'''}} is taken along z-axis, component of {{math|'''N'''}} along z-axis – {{math|''N''<sub>''z''</sub>}} – becomes zero as <math display="block"> \mathbf N = \mathbf R \times \mathbf P </math> Hence <math display="block"> J_z = L_z </math> Since molecular wave function Ψ<sub>s</sub> is a simultaneous [[eigenfunction]] of {{math|''J''<sup>2</sup>}} and {{math|''J''<sub>''z''</sub>}}, <math display="block"> J^2 \Psi_s = J(J+1) \hbar^2 \Psi_s </math> where J is called [[quantum number|rotational quantum number]] and {{math|''J''}} can be a positive integer or zero. <math display="block"> J_z \Psi_s = M_j\hbar \Psi_s </math> where {{math|−''J'' ≤ ''M''<sub>''j''</sub> ≤ ''J''}}. Also since electronic wave function {{math|Φ<sub>''s''</sub>}} is an eigenfunction of {{math|''L''<sub>''z''</sub>}}, <math display="block"> L_z \Phi_s = \pm \Lambda\hbar \Phi_s </math> Hence molecular wave function {{math|Ψ<sub>s</sub>}} is also an eigenfunction of {{math|''L''<sub>''z''</sub>}} with eigenvalue {{math|±Λ''ħ''}}. Since {{math|''L''<sub>''z''</sub>}} and {{math|''J''<sub>''z''</sub>}} are equal, {{math|Ψ<sub>''s''</sub>}} is an eigenfunction of {{math|''J''<sub>''z''</sub>}} with same eigenvalue {{math|±Λ''ħ''}}. As {{math|{{abs|'''J'''}} ≥ ''J''<sub>''z''</sub>}}, we have {{math|''J'' ≥ Λ}}. So possible values of rotational quantum number are <math display="block"> J = \Lambda, \Lambda +1, \Lambda+2, \dots </math> Thus molecular wave function {{math|Ψ<sub>''s''</sub>}} is simultaneous eigenfunction of {{math|''J''<sup>2</sup>}}, {{math|''J''<sub>''z''</sub>}} and {{math|''L''<sub>''z''</sub>}}. Since molecule is in eigenstate of {{ math|''L''<sub>''z''</sub>}}, expectation value of components perpendicular to the direction of z-axis (internuclear line) is zero. Hence <math display="block"> \langle \Psi_s|L_x|\Psi_s\rangle = \langle L_x \rangle = 0 </math> and <math display="block"> \langle \Psi_s|L_y|\Psi_s\rangle = \langle L_y \rangle = 0 </math> Thus <math display="block"> \langle \mathbf J . \mathbf L \rangle = \langle J_z L_z \rangle = \langle {L_z}^2 \rangle </math> Putting all these results together, <math display="block"> \begin{align} \langle \Phi_s |N^2|\Phi_s \rangle F_s(\mathbf R) &= \langle \Phi_s | \left(J^2 + L^2 - 2 \mathbf J \cdot \mathbf L\right) |\Phi_s \rangle F_s(\mathbf R) \\ &= \hbar^2 \left[J(J+1)-\Lambda^2\right] F_s(\mathbf R) + \langle \Phi_s | \left({L_x}^2 + {L_y}^2\right) |\Phi_s \rangle F_s(\mathbf R) \end{align}</math> The Schrödinger equation for the nuclear wave function can now be rewritten as <math display="block">- \frac{\hbar^2}{2\mu R^2}\left[ \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R}\right)- J(J+1)\right]F_s(\mathbf R)+[{E'}_s(R)-E]F_s(\mathbf R) = 0 </math> where <math display="block"> {E'}_s(R) = E_s(R) - \frac{\Lambda^2 \hbar^2}{2\mu R^2} + \frac{1}{2\mu R^2} \langle \Phi_s |\left({L_x}^2 + {L_y}^2\right)|\Phi_s \rangle </math> E′<sub>s</sub> now serves as effective potential in radial nuclear wave function equation. ==== Sigma states ==== Molecular states in which the total orbital momentum of electrons is zero are called [[molecular orbitals|sigma states]]. In sigma states {{math|1=Λ = 0}}. Thus {{math|1=''E''′<sub>s</sub>(''R'') = ''E''<sub>s</sub>(''R'')}}. As nuclear motion for a stable molecule is generally confined to a small interval around {{math|''R''<sub>0</sub>}} where {{math|''R''<sub>0</sub>}} corresponds to internuclear distance for minimum value of potential {{math|''E''<sub>s</sub>(''R''<sub>0</sub>)}}, rotational energies are given by, <math display="block"> E_r = \frac{\hbar^2}{2\mu {R_0}^2} J(J+1) = \frac{\hbar^2}{2I_0} J(J+1) = BJ(J+1) </math> with <math display="block"> J = \Lambda, \Lambda +1, \Lambda+2, \dots </math> {{math|''I''<sub>0</sub>}} is [[moment of inertia]] of the molecule corresponding to [[mechanical equilibrium|equilibrium]] distance {{math|''R''<sub>0</sub>}} and {{math|''B''}} is called '''rotational constant''' for a given electronic state {{math|Φ<sub>''s''</sub>}}. Since reduced mass {{math|''μ''}} is much greater than electronic mass, last two terms in the expression of {{math|''E''′<sub>''s''</sub>(''R'')}} are small compared to {{math|''E''<sub>s</sub>}}. Hence even for states other than sigma states, rotational energy is approximately given by above expression.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)