Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Runge–Kutta methods
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== The RK4 method falls in this framework. Its tableau is<ref name="Süli 2003 352">{{harvnb|Süli|Mayers|2003|p=352}}</ref> :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid;" | 1/2 || 1/2 |- | style="border-right:1px solid;" | 1/2 || 0 || 1/2 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1 || style="border-bottom:1px solid;" | 0 | style="border-bottom:1px solid;" | 0 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1/6 || 1/3 || 1/3 || 1/6 |} A slight variation of "the" Runge–Kutta method is also due to Kutta in 1901 and is called the 3/8-rule.<ref>{{harvtxt|Hairer|Nørsett|Wanner|1993|p=138}} refer to {{harvtxt|Kutta|1901}}.</ref> The primary advantage this method has is that almost all of the error coefficients are smaller than in the popular method, but it requires slightly more FLOPs (floating-point operations) per time step. Its Butcher tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid;" | 1/3 || 1/3 |- | style="border-right:1px solid;" | 2/3 || −1/3 || 1 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | −1 || style="border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1/8 || 3/8 || 3/8 || 1/8 |} However, the simplest Runge–Kutta method is the (forward) [[Euler method]], given by the formula <math> y_{n+1} = y_n + hf(t_n, y_n) </math>. This is the only consistent explicit Runge–Kutta method with one stage. The corresponding tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | width="10" style="border-right:1px solid; border-bottom:1px solid;" | 0 | width="10" style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 1 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)