Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scattering amplitude
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Partial wave expansion == {{Main article|Partial wave analysis}} In the partial wave expansion the scattering amplitude is represented as a sum over the partial waves,<ref>[http://galileo.phys.virginia.edu/classes/752.mf1i.spring03/Scattering_II.htm Michael Fowler/ 1/17/08 Plane Waves and Partial Waves]</ref> :<math>f=\sum_{\ell=0}^\infty (2\ell+1) f_\ell P_\ell(\cos \theta)</math>, where {{math|''f<sub>β</sub>''}} is the partial scattering amplitude and {{math|''P<sub>β</sub>''}} are the [[Legendre polynomial]]s. The partial amplitude can be expressed via the partial wave [[S-matrix]] element {{math|''S<sub>β</sub>''}} (<math>=e^{2i\delta_\ell}</math>) and the '''scattering phase shift''' {{math|''Ξ΄<sub>β</sub>''}} as :<math>f_\ell = \frac{S_\ell-1}{2ik} = \frac{e^{2i\delta_\ell}-1}{2ik} = \frac{e^{i\delta_\ell} \sin\delta_\ell}{k} = \frac{1}{k\cot\delta_\ell-ik} \;.</math> Then the total cross section<ref name=Schiff1968>{{cite book|last=Schiff|first=Leonard I.|title=Quantum Mechanics|url=https://archive.org/details/quantummechanics00schi_086|url-access=limited|date=1968|publisher=McGraw Hill|location=New York|pages=[https://archive.org/details/quantummechanics00schi_086/page/n138 119]β120}}</ref> :<math>\sigma = \int |f(\theta)|^2d\Omega </math>, can be expanded as{{r|landau}} :<math>\sigma = \sum_{l=0}^\infty \sigma_l, \quad \text{where} \quad \sigma_l = 4\pi(2l+1)|f_l|^2=\frac{4\pi}{k^2}(2l+1)\sin^2\delta_l</math> is the partial cross section. The total cross section is also equal to <math>\sigma=(4\pi/k)\,\mathrm{Im} f(0)</math> due to [[optical theorem]]. For <math>\theta\neq 0</math>, we can write{{r|landau}} :<math>f=\frac{1}{2ik}\sum_{\ell=0}^\infty (2\ell+1) e^{2i\delta_l} P_\ell(\cos \theta).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)