Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Semantic network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==In linguistics== In the field of [[linguistics]], semantic networks represent how the human mind handles associated concepts. Typically, concepts in a semantic network can have one of two different relationships: either semantic or associative. If semantic in relation, the two concepts are linked by any of the following semantic relationships: [[synonymy]], [[antonymy]], [[hypernymy]], [[hyponymy]], [[holonymy]], [[meronymy]], [[metonymy]], or [[polysemy]]. These are not the only semantic relationships, but some of the most common. If associative in relation, the two concepts are linked based on their frequency to occur together. These associations are accidental, meaning that nothing about their individual meanings requires them to be associated with one another, only that they typically are. Examples of this would be pig and farm, pig and trough, or pig and mud. While nothing about the meaning of pig forces it to be associated with farms, as pigs can be wild, the fact that pigs are so frequently found on farms creates an accidental associated relationship. These thematic relationships are common within semantic networks and are notable results in [[Free association (psychology)|free association]] tests. As the initial word is given, activation of the most closely related concepts begin, spreading outward to the lesser associated concepts. An example of this would be the initial word pig prompting mammal, then animal, and then breathes. This example shows that taxonomic relationships are inherent within semantic networks. The most closely related concepts typically share [[semantic features]], which are determinants of semantic similarity scores. Words with higher similarity scores are more closely related, thus have higher probability of being a close word in the semantic network. These relationships can be suggested into the brain through [[Priming (psychology)|priming]], where previous examples of the same relationship are shown before the target word is shown. The effect of priming on a semantic network linking can be seen through the speed of the reaction time to the word. Priming can help to reveal the structure of a semantic network and which words are most closely associated with the original word. Disruption of a semantic network can lead to a semantic deficit (not to be confused with as [[semantic dementia]]). ===In the brain=== There exists physical manifestation of semantic relationships in the brain as well. Category-specific semantic circuits show that words belonging to different categories are processed in circuits differently located throughout the brain. For example, the semantic circuits for a word associated with the face or mouth (such as lick) is located in a different place of the brain than a word associated with the leg or foot (such as kick). This is a primary result of a 2013 study published by [[Friedemann Pulvermüller]]{{Citation needed|date=July 2024}}. These semantic circuits are directly tied to their sensorimotor areas of the brain. This is known as embodied semantics, a subtopic of [[embodied language processing]]. If brain damage occurs, the normal processing of semantic networks could be disrupted, leading to preference into what kind of relationships dominate the semantic network in the mind.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)