Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sigmoid function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == [[File:Gjl-t(x).svg|thumb|320px|right|Some sigmoid functions compared. In the drawing all functions are normalized in such a way that their slope at the origin is 1.]] * [[Logistic function]] <math display="block"> f(x) = \frac{1}{1 + e^{-x}} </math> * [[Hyperbolic tangent]] (shifted and scaled version of the logistic function, above) <math display="block"> f(x) = \tanh x = \frac{e^x-e^{-x}}{e^x+e^{-x}} </math> * [[Arctangent function]] <math display="block"> f(x) = \arctan x </math> * [[Gudermannian function]] <math display="block"> f(x) = \operatorname{gd}(x) = \int_0^x \frac{dt}{\cosh t} = 2\arctan\left(\tanh\left(\frac{x}{2}\right)\right) </math> * [[Error function]] <math display="block"> f(x) = \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt </math> * [[Generalised logistic function]] <math display="block"> f(x) = \left(1 + e^{-x} \right)^{-\alpha}, \quad \alpha > 0 </math> * [[Smoothstep]] function <math display="block"> f(x) = \begin{cases} {\displaystyle \left( \int_0^1 \left(1 - u^2\right)^N du \right)^{-1} \int_0^x \left( 1 - u^2 \right)^N \ du}, & |x| \le 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases} \quad N \in \mathbb{Z} \ge 1 </math> * Some [[algebraic function]]s, for example <math display="block"> f(x) = \frac{x}{\sqrt{1+x^2}} </math> * and in a more general form<ref name="Dunning-Kensler-Coudeville-Bailleux_2015" /> <math display="block"> f(x) = \frac{x}{\left(1 + |x|^{k}\right)^{1/k}} </math> * Up to shifts and scaling, many sigmoids are special cases of <math display="block"> f(x) = \varphi(\varphi(x, \beta), \alpha) , </math> where <math display="block"> \varphi(x, \lambda) = \begin{cases} (1 - \lambda x)^{1/\lambda} & \lambda \ne 0 \\e^{-x} & \lambda = 0 \\ \end{cases} </math> is the inverse of the negative [[BoxβCox transformation]], and <math>\alpha < 1</math> and <math>\beta < 1</math> are shape parameters.<ref name="grex" /> * [[Non-analytic_smooth_function#Smooth_transition_functions|Smooth transition function]]<ref>{{Cite web|url=https://www.youtube.com/watch?v=vD5g8aVscUI|title=Smooth Transition Function in One Dimension | Smooth Transition Function Series Part 1|via=www.youtube.com| date =16 August 2022|author=EpsilonDelta|at=13:29/14:04}}</ref> normalized to (β1,1): <!-- <math display="block"> f(x) = \begin{cases} {\displaystyle 2\frac{e^{\frac{1}{u}}}{e^{\frac{1}{u}}+e^{\frac{-1}{1+u}}} - 1}, u=\frac{x+1}{-2}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases}</math> AManWithNoPlan simplified below --> <math display="block">\begin{align}f(x) &= \begin{cases} {\displaystyle \frac{2}{1+e^{-2m\frac{x}{1-x^2}}} - 1}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases} \\ &= \begin{cases} {\displaystyle \tanh\left(m\frac{x}{1-x^2}\right)}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases}\end{align}</math> using the hyperbolic tangent mentioned above. Here, <math>m</math> is a free parameter encoding the slope at <math>x=0</math>, which must be greater than or equal to <math>\sqrt{3}</math> because any smaller value will result in a function with multiple inflection points, which is therefore not a true sigmoid. This function is unusual because it actually attains the limiting values of β1 and 1 within a finite range, meaning that its value is constant at β1 for all <math>x \leq -1</math> and at 1 for all <math>x \geq 1</math>. Nonetheless, it is [[Smoothness|smooth]] (infinitely differentiable, <math>C^\infty</math>) ''everywhere'', including at <math>x = \pm 1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)