Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Singular value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Inequalities about singular values == See also.<ref>[[Roger Horn|R. A. Horn]] and [[Charles Royal Johnson|C. R. Johnson]]. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. Chap. 3</ref> ===Singular values of sub-matrices=== For <math>A \in \mathbb{C}^{m \times n}.</math> # Let <math>B</math> denote <math>A</math> with one of its rows ''or'' columns deleted. Then <math display="block">\sigma_{i+1}(A) \leq \sigma_i (B) \leq \sigma_i(A)</math> # Let <math>B</math> denote <math>A</math> with one of its rows ''and'' columns deleted. Then <math display="block">\sigma_{i+2}(A) \leq \sigma_i (B) \leq \sigma_i(A)</math> # Let <math>B</math> denote an <math>(m-k)\times(n-\ell)</math> submatrix of <math>A</math>. Then <math display="block">\sigma_{i+k+\ell}(A) \leq \sigma_i (B) \leq \sigma_i(A)</math> ===Singular values of ''A'' + ''B''=== For <math>A, B \in \mathbb{C}^{m \times n}</math> # <math display="block">\sum_{i=1}^{k} \sigma_i(A + B) \leq \sum_{i=1}^{k} (\sigma_i(A) + \sigma_i(B)), \quad k=\min \{m,n\}</math> # <math display="block">\sigma_{i+j-1}(A + B) \leq \sigma_i(A) + \sigma_j(B). \quad i,j\in\mathbb{N},\ i + j - 1 \leq \min \{m,n\}</math> ===Singular values of ''AB''=== For <math>A, B \in \mathbb{C}^{n \times n}</math> # <math display="block">\begin{align} \prod_{i=n}^{i=n-k+1} \sigma_i(A) \sigma_i(B) &\leq \prod_{i=n}^{i=n-k+1} \sigma_i(AB) \\ \prod_{i=1}^k \sigma_i(AB) &\leq \prod_{i=1}^k \sigma_i(A) \sigma_i(B), \\ \sum_{i=1}^k \sigma_i^p(AB) &\leq \sum_{i=1}^k \sigma_i^p(A) \sigma_i^p(B), \end{align}</math> # <math display="block">\sigma_n(A) \sigma_i(B) \leq \sigma_i (AB) \leq \sigma_1(A) \sigma_i(B) \quad i = 1, 2, \ldots, n. </math> For <math>A, B \in \mathbb{C}^{m \times n}</math><ref>X. Zhan. Matrix Inequalities. Springer-Verlag, Berlin, Heidelberg, 2002. p.28</ref> <math display="block">2 \sigma_i(A B^*) \leq \sigma_i \left(A^* A + B^* B\right), \quad i = 1, 2, \ldots, n. </math> ===Singular values and eigenvalues=== For <math>A \in \mathbb{C}^{n \times n}</math>. # See<ref>R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997. Prop. III.5.1</ref> <math display="block">\lambda_i \left(A + A^*\right) \leq 2 \sigma_i(A), \quad i = 1, 2, \ldots, n.</math> # Assume <math>\left|\lambda_1(A)\right| \geq \cdots \geq \left|\lambda_n(A)\right|</math>. Then for <math>k = 1, 2, \ldots, n</math>: ## [[Weyl's inequality#Weyl's inequality in matrix theory|Weyl's theorem]] <math display="block"> \prod_{i=1}^k \left|\lambda_i(A)\right| \leq \prod_{i=1}^{k} \sigma_i(A).</math> ## For <math>p>0</math>. <math display="block"> \sum_{i=1}^k \left|\lambda_i^p(A)\right| \leq \sum_{i=1}^{k} \sigma_i^p(A).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)