Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Skew-symmetric matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Vector space structure === As a result of the first two properties above, the set of all skew-symmetric matrices of a fixed size forms a [[vector space]]. The space of <math display=inline>n \times n</math> skew-symmetric matrices has [[Dimension of a vector space|dimension]] <math display=inline>\frac{1}{2}n(n - 1).</math> Let <math>\mbox{Mat}_n</math> denote the space of <math display=inline>n \times n</math> matrices. A skew-symmetric matrix is determined by <math display=inline>\frac{1}{2}n(n - 1)</math> scalars (the number of entries above the [[main diagonal]]); a [[symmetric matrix]] is determined by <math display=inline>\frac{1}{2}n(n + 1)</math> scalars (the number of entries on or above the main diagonal). Let <math display=inline>\mbox{Skew}_n</math> denote the space of <math display=inline>n \times n</math> skew-symmetric matrices and <math display=inline>\mbox{Sym}_n</math> denote the space of <math display=inline>n \times n</math> symmetric matrices. If <math display=inline>A \in \mbox{Mat}_n</math> then <math display="block">A = \tfrac{1}{2}\left(A - A^\mathsf{T}\right) + \tfrac{1}{2}\left(A + A^\mathsf{T}\right).</math> Notice that <math display=inline>\frac{1}{2}\left(A - A^\textsf{T}\right) \in \mbox{Skew}_n</math> and <math display=inline>\frac{1}{2}\left(A + A^\textsf{T}\right) \in \mbox{Sym}_n.</math> This is true for every [[square matrix]] <math display=inline>A</math> with entries from any [[field (mathematics)|field]] whose [[characteristic (algebra)|characteristic]] is different from 2. Then, since <math display=inline>\mbox{Mat}_n = \mbox{Skew}_n + \mbox{Sym}_n</math> and <math display=inline>\mbox{Skew}_n \cap \mbox{Sym}_n = \{0\},</math> <math display=block>\mbox{Mat}_n = \mbox{Skew}_n \oplus \mbox{Sym}_n,</math> where <math>\oplus</math> denotes the [[Direct sum of modules|direct sum]]. Denote by <math display=inline>\langle \cdot, \cdot \rangle</math> the standard [[inner product]] on <math>\R^n.</math> The real <math>n \times n</math> matrix <math display=inline>A</math> is skew-symmetric if and only if <math display=block>\langle Ax,y \rangle = - \langle x, Ay\rangle \quad \text{ for all } x, y \in \R^n.</math> This is also equivalent to <math display=inline>\langle x, Ax \rangle = 0</math> for all <math>x \in \R^n</math> (one implication being obvious, the other a plain consequence of <math display=inline>\langle x + y, A(x + y)\rangle = 0</math> for all <math>x</math> and <math>y</math>). Since this definition is independent of the choice of [[Basis (linear algebra)|basis]], skew-symmetry is a property that depends only on the [[linear operator]] <math>A</math> and a choice of [[inner product]]. <math>3 \times 3</math> skew symmetric matrices can be used to represent [[cross product]]s as matrix multiplications. Furthermore, if <math>A</math> is a skew-symmetric (or [[Skew-Hermitian matrix|skew-Hermitian]]) matrix, then <math>x^T A x = 0</math> for all <math>x \in \C^n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)