Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== === Greek antiquity=== The earliest mathematical work of antiquity to come down to our time is ''On the rotating sphere'' (Περὶ κινουμένης σφαίρας, ''Peri kinoumenes sphairas'') by [[Autolycus of Pitane]], who lived at the end of the fourth century BC.<ref>{{cite book|last1=Rosenfeld|first1=B.A|title=A history of non-Euclidean geometry : evolution of the concept of a geometric space|date=1988|publisher=Springer-Verlag|location=New York|isbn=0-387-96458-4|page=2}}</ref> Spherical trigonometry was studied by early [[Greek mathematics|Greek mathematicians]] such as [[Theodosius of Bithynia]], a Greek astronomer and mathematician who wrote ''[[Theodosius' Spherics|Spherics]]'', a book on the geometry of the sphere,<ref>{{cite web|url=http://www.encyclopedia.com/doc/1G2-2830904281.html|title=Theodosius of Bithynia – Dictionary definition of Theodosius of Bithynia |work=[[HighBeam Research]]|access-date=25 March 2015}}</ref> and [[Menelaus of Alexandria]], who wrote a book on spherical trigonometry called ''Sphaerica'' and developed [[Menelaus' theorem]].<ref>{{MacTutor|id=Menelaus|title=Menelaus of Alexandria}}</ref><ref>{{cite web|url=http://www.encyclopedia.com/topic/Menelaus_of_Alexandria.aspx#1|title=Menelaus of Alexandria Facts, information, pictures |work=[[HighBeam Research]]|access-date=25 March 2015}}</ref> ===Islamic world=== {{See also|Mathematics in medieval Islam}} ''The Book of Unknown Arcs of a Sphere'' written by the Islamic mathematician [[Al-Jayyani]] is considered to be the first treatise on spherical trigonometry. The book contains formulae for right-handed<!--angled?--> triangles, the general law of sines, and the solution of a spherical triangle by means of the polar triangle.<ref>[http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Jayyani.html School of Mathematical and Computational Sciences University of St Andrews]</ref> The book ''On Triangles'' by [[Regiomontanus]], written around 1463, is the first pure trigonometrical work in Europe. However, [[Gerolamo Cardano]] noted a century later that much of its material on spherical trigonometry was taken from the twelfth-century work of the [[Al-Andalus|Andalusi]] scholar [[Jabir ibn Aflah]].<ref>{{Cite web |url=http://press.princeton.edu/chapters/i8583.html |title=Victor J. Katz-Princeton University Press |access-date=2009-03-01 |archive-date=2016-10-01 |archive-url=https://web.archive.org/web/20161001214903/http://press.princeton.edu/chapters/i8583.html |url-status=dead }}</ref> ===Euler's work=== [[Leonhard Euler]] published a series of important memoirs on spherical geometry: * L. Euler, Principes de la trigonométrie sphérique tirés de la méthode des plus grands et des plus petits, Mémoires de l'Académie des Sciences de Berlin 9 (1753), 1755, p. 233–257; Opera Omnia, Series 1, vol. XXVII, p. 277–308. * L. Euler, Eléments de la trigonométrie sphéroïdique tirés de la méthode des plus grands et des plus petits, Mémoires de l'Académie des Sciences de Berlin 9 (1754), 1755, p. 258–293; Opera Omnia, Series 1, vol. XXVII, p. 309–339. * L. Euler, De curva rectificabili in superficie sphaerica, Novi Commentarii academiae scientiarum Petropolitanae 15, 1771, pp. 195–216; Opera Omnia, Series 1, Volume 28, pp. 142–160. * L. Euler, De mensura angulorum solidorum, Acta academiae scientiarum imperialis Petropolitinae 2, 1781, p. 31–54; Opera Omnia, Series 1, vol. XXVI, p. 204–223. * L. Euler, Problematis cuiusdam Pappi Alexandrini constructio, Acta academiae scientiarum imperialis Petropolitinae 4, 1783, p. 91–96; Opera Omnia, Series 1, vol. XXVI, p. 237–242. * L. Euler, Geometrica et sphaerica quaedam, Mémoires de l'Académie des Sciences de Saint-Pétersbourg 5, 1815, p. 96–114; Opera Omnia, Series 1, vol. XXVI, p. 344–358. * L. Euler, Trigonometria sphaerica universa, ex primis principiis breviter et dilucide derivata, Acta academiae scientiarum imperialis Petropolitinae 3, 1782, p. 72–86; Opera Omnia, Series 1, vol. XXVI, p. 224–236. * L. Euler, Variae speculationes super area triangulorum sphaericorum, Nova Acta academiae scientiarum imperialis Petropolitinae 10, 1797, p. 47–62; Opera Omnia, Series 1, vol. XXIX, p. 253–266.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)