Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical harmonics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Orbital angular momentum=== In quantum mechanics, Laplace's spherical harmonics are understood in terms of the [[angular momentum operator|orbital angular momentum]]<ref>{{harvnb|Edmonds|1957|loc=Β§2.5}}</ref> <math display="block">\mathbf{L} = -i\hbar (\mathbf{x}\times \mathbf{\nabla}) = L_x\mathbf{i} + L_y\mathbf{j}+L_z\mathbf{k}.</math> The {{math|''Δ§''}} is conventional in quantum mechanics; it is convenient to work in units in which {{math|1=''Δ§'' = 1}}. The spherical harmonics are eigenfunctions of the square of the orbital angular momentum <math display="block">\begin{align} \mathbf{L}^2 &= -r^2\nabla^2 + \left(r\frac{\partial}{\partial r}+1\right)r\frac{\partial}{\partial r}\\ &= -\frac{1}{\sin\theta} \frac{\partial}{\partial \theta}\sin\theta \frac{\partial}{\partial \theta} - \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \varphi^2}. \end{align}</math> Laplace's spherical harmonics are the joint eigenfunctions of the square of the orbital angular momentum and the generator of rotations about the azimuthal axis: <math display="block">\begin{align} L_z &= -i\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)\\ &=-i\frac{\partial}{\partial\varphi}. \end{align}</math> These operators commute, and are [[Densely defined operator|densely defined]] [[self-adjoint operator]]s on the [[Lp space#Weighted Lp spaces|weighted]] [[Hilbert space]] of functions ''f'' square-integrable with respect to the [[normal distribution]] as the weight function on '''R'''<sup>3</sup>: <math display="block">\frac{1}{(2\pi)^{3/2}}\int_{\R^3} |f(x)|^2 e^{-|x|^2/2}\,dx < \infty.</math> Furthermore, '''L'''<sup>2</sup> is a [[positive operator]]. If {{math|''Y''}} is a joint eigenfunction of {{math|'''L'''<sup>2</sup>}} and {{math|''L''<sub>''z''</sub>}}, then by definition <math display="block">\begin{align} \mathbf{L}^2Y &= \lambda Y\\ L_zY &= mY \end{align}</math> for some real numbers ''m'' and ''Ξ»''. Here ''m'' must in fact be an integer, for ''Y'' must be periodic in the coordinate ''Ο'' with period a number that evenly divides 2''Ο''. Furthermore, since <math display="block">\mathbf{L}^2 = L_x^2 + L_y^2 + L_z^2</math> and each of ''L''<sub>''x''</sub>, ''L''<sub>''y''</sub>, ''L''<sub>''z''</sub> are self-adjoint, it follows that {{math|''Ξ»'' β₯ ''m''<sup>2</sup>}}. Denote this joint eigenspace by {{math|''E''<sub>''Ξ»'',''m''</sub>}}, and define the [[raising and lowering operators]] by <math display="block">\begin{align} L_+ &= L_x + iL_y\\ L_- &= L_x - iL_y \end{align}</math> Then {{math|''L''<sub>+</sub>}} and {{math|''L''<sub>β</sub>}} commute with {{math|'''L'''<sup>2</sup>}}, and the Lie algebra generated by {{math|''L''<sub>+</sub>}}, {{math|''L''<sub>β</sub>}}, {{math|''L''<sub>''z''</sub>}} is the [[special linear Lie algebra]] of order 2, <math>\mathfrak{sl}_2(\Complex)</math>, with commutation relations <math display="block">[L_z,L_+] = L_+,\quad [L_z,L_-] = -L_-, \quad [L_+,L_-] = 2L_z.</math> Thus {{math|''L''<sub>+</sub> : ''E''<sub>''Ξ»'',''m''</sub> β ''E''<sub>''Ξ»'',''m''+1</sub>}} (it is a "raising operator") and {{math|''L''<sub>β</sub> : ''E''<sub>''Ξ»'',''m''</sub> β ''E''<sub>''Ξ»'',''m''β1</sub>}} (it is a "lowering operator"). In particular, {{math|1=''L''{{su|b=+|p=''k''}} : ''E''<sub>''Ξ»'',''m''</sub> β ''E''<sub>''Ξ»'',''m''+''k''</sub>}} must be zero for ''k'' sufficiently large, because the inequality {{mvar|''Ξ»'' β₯ ''m''<sup>2</sup>}} must hold in each of the nontrivial joint eigenspaces. Let {{mvar|''Y'' β ''E''<sub>''Ξ»'',''m''</sub>}} be a nonzero joint eigenfunction, and let {{mvar|k}} be the least integer such that <math display="block">L_+^kY = 0.</math> Then, since <math display="block">L_-L_+ = \mathbf{L}^2 - L_z^2 - L_z</math> it follows that <math display="block">0 = L_-L_+^k Y = (\lambda - (m+k)^2-(m+k))Y.</math> Thus {{math|1=''Ξ»'' = ''β''(''β'' + 1)}} for the positive integer {{math|1=''β'' = ''m'' + ''k''}}. The foregoing has been all worked out in the spherical coordinate representation, <math>\langle \theta, \varphi| l m\rangle = Y_l^m (\theta, \varphi)</math> but may be expressed more abstractly in the complete, orthonormal [[Angular momentum operator#Orbital angular momentum in spherical coordinates|spherical ket basis]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)