Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spintronics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Spintronic-logic devices== Non-volatile spin-logic devices to enable scaling are being extensively studied.<ref>[[International Technology Roadmap for Semiconductors]]</ref> Spin-transfer, torque-based logic devices that use spins and magnets for information processing have been proposed.<ref>{{Cite journal | last1 = Behin-Aein | first1 = B. | last2 = Datta | first2 = D. | last3 = Salahuddin | first3 = S. | last4 = Datta | first4 = S. | title = Proposal for an all-spin logic device with built-in memory | doi = 10.1038/nnano.2010.31 | journal = Nature Nanotechnology | volume = 5 | issue = 4 | pages = 266β270 | year = 2010 | pmid = 20190748|bibcode = 2010NatNa...5..266B }}</ref><ref>Manipatruni, Sasikanth; Nikonov, Dmitri E. and Young, Ian A. (2011) [https://arxiv.org/abs/1112.2746 [1112.2746] Circuit Theory for SPICE of Spintronic Integrated Circuits]. Arxiv.org. Retrieved on 21 October 2013.</ref> These devices are part of the [[International Technology Roadmap for Semiconductors|ITRS]] exploratory road map. Logic-in memory applications are already in the development stage.<ref>[https://archive.today/20120420160205/http://crocus-technology.com/pr-12-08-11.html Crocus Partners With Starchip To Develop System-On-Chip Solutions Based on Magnetic-Logic-Unit (MLU) Technology]. crocus-technology.com. 8 December 2011</ref><ref>[http://www.nec.com/en/press/201206/global_20120611_02.html Groundbreaking New Technology for Improving the Reliability of Spintronics Logic Integrated Circuits]. Nec.com. 11 June 2012.</ref> A 2017 review article can be found in ''Materials Today''.<ref name="Bhatti et al." /> A generalized circuit theory for spintronic integrated circuits has been proposed<ref>S. Manipatruni, D. E. Nikonov and I. A. Young, "Modeling and Design of Spintronic Integrated Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2801β2814, Dec. 2012, doi: 10.1109/TCSI.2012.2206465. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359950&isnumber=6359940</ref> so that the physics of spin transport can be utilized by SPICE developers and subsequently by circuit and system designers for the exploration of spintronics for "beyond CMOS computing". ===Applications=== [[Disk read-and-write head|Read heads]] of magnetic [[hard drive]]s are based on the GMR or TMR effect. Motorola developed a first-generation 256 [[kilobit|kb]] [[magnetoresistive random-access memory]] (MRAM) based on a single magnetic tunnel junction and a single transistor that has a read/write cycle of under 50 nanoseconds.<ref>[http://www.sigmaaldrich.com/materials-science/alternative-energy-materials/magnetic-materials/tutorial/spintronics.html Spintronics]. Sigma-Aldrich. Retrieved on 21 October 2013.</ref> [[Everspin]] has since developed a 4 [[Megabit|Mb]] version.<ref>[http://www.everspin.com/technology.php Everspin] {{webarchive |url=https://web.archive.org/web/20120630001137/http://www.everspin.com/technology.php |date=30 June 2012 }}. Everspin. Retrieved on 21 October 2013.</ref> Two second-generation MRAM techniques are in development: [[thermal-assisted switching]] (TAS)<ref>Hoberman, Barry. [http://www.crocustechnology.com/pdf/BH%20GSA%20Article.pdf The Emergence of Practical MRAM] {{webarchive|url=https://web.archive.org/web/20131021115241/http://www.crocustechnology.com/pdf/BH%20GSA%20Article.pdf |date=21 October 2013 }}. crocustechnology.com</ref> and [[spin-transfer torque]] (STT).<ref>LaPedus, Mark (18 June 2009) [http://www.eetimes.com/document.asp?doc_id=1171188 Tower invests in Crocus, tips MRAM foundry deal]. eetimes.com</ref> Another design, [[racetrack memory]], a novel memory architecture proposed by [[Stuart Parkin|Dr. Stuart S. P. Parkin]], encodes information in the direction of magnetization between domain walls of a ferromagnetic wire. In 2012, persistent spin helices of synchronized electrons were made to persist for more than a nanosecond, a 30-fold increase over earlier efforts, and longer than the duration of a modern processor clock cycle.<ref>{{cite journal|author=Walser, M.|author2=Reichl, C.|author3=Wegscheider, W.|author4=Salis, G.|name-list-style=amp |title=Direct mapping of the formation of a persistent spin helix|journal=Nature Physics|doi=10.1038/nphys2383|bibcode = 2012NatPh...8..757W|date=2012|volume=8|issue=10|pages=757 |arxiv=1209.4857|s2cid=119209785}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)