Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Steinhaus–Moser notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mega== A mega, ②, is already a very large number, since ② = square(square(2)) = square(triangle(triangle(2))) = square(triangle(2<sup>2</sup>)) = square(triangle(4)) = square(4<sup>4</sup>) = square(256) = triangle(triangle(triangle(...triangle(256)...))) [256 triangles] = triangle(triangle(triangle(...triangle(256<sup>256</sup>)...))) [255 triangles] ~ triangle(triangle(triangle(...triangle(3.2317 × 10<sup>616</sup>)...))) [255 triangles] ... Using the other notation: mega = <math>M(2,1,5) = M(256,256,3)</math> With the function <math>f(x)=x^x</math> we have mega = <math>f^{256}(256) = f^{258}(2)</math> where the superscript denotes a [[Iterated function|functional power]], not a numerical power. We have (note the convention that powers are evaluated from right to left): *<math>M(256,2,3) =</math> <math>(256^{\,\!256})^{256^{256}}=256^{256^{257}}</math> *<math>M(256,3,3) =</math> <math>(256^{\,\!256^{257}})^{256^{256^{257}}}=256^{256^{257}\times 256^{256^{257}}}=256^{256^{257+256^{257}}}</math>≈<math>256^{\,\!256^{256^{257}}}</math> Similarly: *<math>M(256,4,3) \approx</math> <math>{\,\!256^{256^{256^{256^{257}}}}}</math> *<math>M(256,5,3) \approx</math> <math>{\,\!256^{256^{256^{256^{256^{257}}}}}}</math> *<math>M(256,6,3) \approx</math> <math>{\,\!256^{256^{256^{256^{256^{256^{257}}}}}}}</math> etc. Thus: *mega = <math>M(256,256,3)\approx(256\uparrow)^{256}257</math>, where <math>(256\uparrow)^{256}</math> denotes a functional power of the function <math>f(n)=256^n</math>. Rounding more crudely (replacing the 257 at the end by 256), we get mega ≈ <math>256\uparrow\uparrow 257</math>, using [[Knuth's up-arrow notation]]. After the first few steps the value of <math>n^n</math> is each time approximately equal to <math>256^n</math>. In fact, it is even approximately equal to <math>10^n</math> (see also [[Large numbers#Approximate arithmetic|approximate arithmetic for very large numbers]]). Using base 10 powers we get: *<math>M(256,1,3)\approx 3.23\times 10^{616}</math> *<math>M(256,2,3)\approx10^{\,\!1.99\times 10^{619}}</math> (<math>\log _{10} 616</math> is added to the 616) *<math>M(256,3,3)\approx10^{\,\!10^{1.99\times 10^{619}}}</math> (<math>619</math> is added to the <math>1.99\times 10^{619}</math>, which is negligible; therefore just a 10 is added at the bottom) *<math>M(256,4,3)\approx10^{\,\!10^{10^{1.99\times 10^{619}}}}</math> ... *mega = <math>M(256,256,3)\approx(10\uparrow)^{255}1.99\times 10^{619}</math>, where <math>(10\uparrow)^{255}</math> denotes a functional power of the function <math>f(n)=10^n</math>. Hence <math>10\uparrow\uparrow 257 < \text{mega} < 10\uparrow\uparrow 258</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)