Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Systolic array
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Goals and benefits== A major benefit of systolic arrays is that all operand data and partial results are stored within (passing through) the processor array. There is no need to access external buses, main memory or internal caches during each operation as is the case with Von Neumann or [[Harvard architecture|Harvard]] sequential machines. The sequential limits on [[parallel computing|parallel]] performance dictated by [[Amdahl's Law]] also do not apply in the same way, because data dependencies are implicitly handled by the programmable [[Node (computer science)|node]] interconnect and there are no sequential steps in managing the highly parallel data flow. Systolic arrays are therefore extremely good at artificial intelligence, image processing, pattern recognition, computer vision and other tasks that animal brains do particularly well. Wavefront processors in general can also be very good at machine learning by implementing self configuring neural nets in hardware.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)