Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tait's conjecture
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===The counterexample=== [[Image:PlanarNonHamil.png|right]] The fragment can then be used to construct the non-Hamiltonian '''[[Tutte graph]]''', by putting together three such fragments as shown on the picture. The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle. The resulting [[Tutte graph]] is [[graph connectivity|3-connected]] and [[planar graph|planar]], so by [[Steinitz' theorem]] it is the graph of a polyhedron. In total it has 25 faces, 69 edges and 46 vertices. It can be realized geometrically from a tetrahedron (the faces of which correspond to the four large faces in the drawing, three of which are between pairs of fragments and the fourth of which forms the exterior) by multiply truncating three of its vertices.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)