Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Statement of the theorem === The precise statement of the most basic version of Taylor's theorem is as follows: {{math theorem | name = Taylor's theorem<ref>{{ citation|first1=Angelo|last1=Genocchi|first2= Giuseppe|last2=Peano|title=Calcolo differenziale e principii di calcolo integrale|location=(N. 67, pp. XVIIβXIX)|publisher=[[Fratelli Bocca |Fratelli Bocca ed.]]|year=1884}}</ref><ref>{{Citation | last1=Spivak | first1=Michael | author1-link=Michael Spivak | title=Calculus | publisher=Publish or Perish | location=Houston, TX | edition=3rd | isbn=978-0-914098-89-8 | year=1994| page=383}}</ref><ref>{{springer|title=Taylor formula|id=p/t092300}}</ref> | math_statement = Let ''k'' β₯ 1 be an [[integer]] and let the [[Function (mathematics)|function]] {{nowrap|''f'' : '''R''' β '''R'''}} be ''k'' times [[Differentiable function|differentiable]] at the point {{nowrap|''a'' β '''R'''}}. Then there exists a function {{nowrap|''h<sub>k</sub>'' : '''R''' β '''R'''}} such that <math display="block"> f(x) = \sum_{i=0}^k \frac{f^{(i)}(a)}{i!}(x-a)^i + h_k(x)(x-a)^k,</math> and <math display="block">\lim_{x\to a} h_k(x) = 0.</math> This is called the '''[[Peano]] form of the remainder'''. }} The polynomial appearing in Taylor's theorem is the '''<math display="inline">\boldsymbol{k}</math>-th order Taylor polynomial''' <math display="block">P_k(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(k)}(a)}{k!}(x-a)^k </math> of the function ''f'' at the point ''a''. The Taylor polynomial is the unique "asymptotic best fit" polynomial in the sense that if there exists a function {{nowrap|''h<sub>k</sub>'' : '''R''' β '''R'''}} and a <math display="inline">k</math>-th order polynomial ''p'' such that <math display="block"> f(x) = p(x) + h_k(x)(x-a)^k, \quad \lim_{x\to a} h_k(x) = 0 ,</math> then ''p'' = ''P<sub>k</sub>''. Taylor's theorem describes the asymptotic behavior of the '''remainder term''' <math display="block"> R_k(x) = f(x) - P_k(x),</math> which is the [[approximation error]] when approximating ''f'' with its Taylor polynomial. Using the [[little-o notation]], the statement in Taylor's theorem reads as <math display="block">R_k(x) = o(|x-a|^{k}), \quad x\to a.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)