Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Titanium dioxide
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Mineralogy and uncommon polymorphs=== Titanium dioxide occurs in nature as the minerals [[rutile]] and [[anatase]]. Additionally two high-pressure forms are known minerals: a [[monoclinic crystal system|monoclinic]] [[baddeleyite]]-like form known as [[akaogiite]], and the other has a slight monoclinic distortion of the [[orthorhombic crystal system|orthorhombic]] [[lead dioxide|α-PbO<sub>2</sub>]] structure and is known as riesite. Both of which can be found at the [[Nördlinger Ries|Ries crater]] in [[Bavaria]].<ref>{{cite journal |doi=10.1126/science.1062342|year=2001|title=An ultradense polymorph of rutile with seven-coordinated titanium from the Ries crater.|volume=293|issue=5534|pages=1467–70|pmid=11520981|journal=Science|author1=El, Goresy|author2=Chen, M|author3=Dubrovinsky, L|author4=Gillet, P|author5=Graup, G|bibcode=2001Sci...293.1467E|s2cid=24349901}}</ref><ref>{{cite journal |doi=10.1016/S0012-821X(01)00480-0|title=A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany|year=2001|author=El Goresy, Ahmed|journal=Earth and Planetary Science Letters|volume=192|pages=485|last2=Chen|first2=Ming|last3=Gillet|first3=Philippe|last4=Dubrovinsky|first4=Leonid|last5=Graup|first5=GüNther|last6=Ahuja|first6=Rajeev|bibcode=2001E&PSL.192..485E|issue=4}}</ref><ref>[https://www.mindat.org/min-35912.html Akaogiite]. mindat.org</ref> It is mainly sourced from [[ilmenite]], which is the most widespread titanium dioxide-bearing ore around the world. Rutile is the next most abundant and contains around 98% titanium dioxide in the ore. The metastable anatase and brookite phases convert irreversibly to the equilibrium rutile phase upon heating above temperatures in the range {{convert|600|-|800|C|-1}}.<ref>{{cite journal |last1=Hanaor |first1=Dorian A. H. |last2=Sorrell |first2=Charles C. |title=Review of the anatase to rutile phase transformation |journal=Journal of Materials Science |date=February 2011 |volume=46 |issue=4 |pages=855–874 |doi=10.1007/s10853-010-5113-0 |bibcode=2011JMatS..46..855H |s2cid=97190202 |url=https://hal.science/hal-02308408|doi-access=free }}</ref> Titanium dioxide has twelve known polymorphs – in addition to rutile, anatase, brookite, akaogiite and riesite, three metastable phases can be produced synthetically ([[monoclinic crystal system|monoclinic]], [[tetragonal crystal system|tetragonal]], and orthorhombic ramsdellite-like), and four high-pressure forms (α-PbO<sub>2</sub>-like, [[cotunnite]]-like, orthorhombic OI, and cubic phases) also exist: {| class="wikitable" |- ! Form ! Crystal system ! Synthesis |- | [[Rutile]] | [[Tetragonal crystal system|Tetragonal]] | |- | [[Anatase]] |[[Tetragonal crystal system|Tetragonal]] | |- | [[Brookite]] | [[Orthorhombic crystal system|Orthorhombic]] | |- | TiO<sub>2</sub>(B)<ref>{{cite journal |author1=Marchand R. |author2=Brohan L. |author3=Tournoux M. |title= A new form of titanium dioxide and the potassium octatitanate K<sub>2</sub>Ti<sub>8</sub>O<sub>17</sub> |year= 1980|journal= Materials Research Bulletin|volume= 15|issue= 8|pages= 1129–1133|doi= 10.1016/0025-5408(80)90076-8}}</ref> | [[Monoclinic crystal system|Monoclinic]] | Hydrolysis of K<sub>2</sub>Ti<sub>4</sub>O<sub>9</sub> followed by heating |- | TiO<sub>2</sub>(H), [[hollandite]]-like form<ref>{{cite journal |title= New hollandite oxides: TiO<sub>2</sub>(H) and K<sub>0.06</sub>TiO<sub>2</sub>|year= 1989|journal= Journal of Solid State Chemistry|volume= 81|issue= 1|pages= 78–82 |doi= 10.1016/0022-4596(89)90204-1|author1= Latroche, M|author2= Brohan, L|author3= Marchand, R|author4= Tournoux|bibcode= 1989JSSCh..81...78L}}</ref> |[[Tetragonal crystal system|Tetragonal]] | Oxidation of the related potassium titanate bronze, K<sub>0.25</sub>TiO<sub>2</sub> |- | TiO<sub>2</sub>(R), [[ramsdellite]]-like form<ref>{{cite journal |title= Topotactic Oxidation of Ramsdellite-Type Li<sub>0.5</sub>TiO<sub>2</sub>, a New Polymorph of Titanium Dioxide: TiO<sub>2</sub>(R)|year= 1994|journal= Journal of Solid State Chemistry|volume= 113|issue= 1|pages= 27–36 |doi= 10.1006/jssc.1994.1337|bibcode= 1994JSSCh.113...27A|last1= Akimoto|first1= J.|last2= Gotoh|first2= Y.|last3= Oosawa|first3= Y.|last4= Nonose|first4= N.|last5= Kumagai|first5= T.|last6= Aoki|first6= K.|last7= Takei|first7= H.}}</ref> |[[Orthorhombic crystal system|Orthorhombic]] | Oxidation of the related lithium titanate bronze Li<sub>0.5</sub>TiO<sub>2</sub> |- | TiO<sub>2</sub>(II)-([[lead dioxide|α-PbO<sub>2</sub>]]-like form)<ref>{{cite journal |title= The structure of TiO<sub>2</sub>II, a high-pressure phase of TiO<sub>2</sub>|year= 1967|journal= Acta Crystallographica|volume= 23 |issue= 2|pages= 334–336|doi= 10.1107/S0365110X67002713|last1= Simons|first1= P. Y.|last2= Dachille|first2= F.|bibcode= 1967AcCry..23..334S}}</ref> |[[Orthorhombic crystal system|Orthorhombic]] | |- | [[Akaogiite]] ([[baddeleyite]]-like form, 7 coordinated Ti)<ref>{{cite journal |author1=Sato H |author2=Endo S |author3=Sugiyama M |author4=Kikegawa T |author5=Shimomura O |author6=Kusaba K |title= Baddeleyite-Type High-Pressure Phase of TiO<sub>2</sub>|year= 1991|journal= Science|volume= 251|issue= 4995|pages= 786–788|doi= 10.1126/science.251.4995.786|pmid= 17775458|bibcode= 1991Sci...251..786S|s2cid=28241170 }}</ref> |[[Monoclinic crystal system|Monoclinic]] | |- | TiO<sub>2</sub> -OI<ref>{{cite journal |author1=Dubrovinskaia N. A. |author2=Dubrovinsky L. S. |author3=Ahuja R. |author4=Prokopenko V. B. |author5=Dmitriev V. |author6=Weber H.-P. |author7=Osorio-Guillen J. M. |author8=Johansson B. |title= Experimental and Theoretical Identification of a New High-Pressure TiO<sub>2</sub> Polymorph|year= 2001|journal= Phys. Rev. Lett.|volume= 87|pages= 275501|doi= 10.1103/PhysRevLett.87.275501|pmid= 11800890|issue= 27 Pt 1|bibcode=2001PhRvL..87A5501D}}</ref> |[[Orthorhombic crystal system|Orthorhombic]] | |- | [[Cubic crystal system|Cubic]] form<ref>{{cite journal |author1=Mattesini M. |author2=de Almeida J. S. |author3=Dubrovinsky L. |author4=Dubrovinskaia L. |author5=Johansson B. |author6=Ahuja R. |title= High-pressure and high-temperature synthesis of the cubic TiO<sub>2</sub> polymorph|year= 2004|journal= Phys. Rev. B|volume= 70|pages= 212101|doi= 10.1103/PhysRevB.70.212101|issue= 21|bibcode= 2004PhRvB..70u2101M |title-link=cubic crystal system}}</ref> | [[Cubic crystal system|Cubic]] | P > 40 GPa, T > 1600 °C |- | TiO<sub>2</sub> -OII, [[cotunnite]]([[lead(II) chloride|PbCl<sub>2</sub>]])-like<ref name=du1>{{cite journal |title= Materials science: The hardest known oxide|year= 2001|journal= Nature|volume= 410|pages= 653–654|doi= 10.1038/35070650|pmid= 11287944|last1= Dubrovinsky|first1= LS|last2= Dubrovinskaia|first2= NA|last3= Swamy|first3= V|last4= Muscat|first4= J|last5= Harrison|first5= NM|last6= Ahuja|first6= R|last7= Holm|first7= B|last8= Johansson|first8= B|issue= 6829|bibcode= 2001Natur.410..653D |hdl= 10044/1/11018|s2cid= 4365291|hdl-access= free}}</ref> |[[Orthorhombic crystal system|Orthorhombic]] | P > 40 GPa, T > 700 °C |} The [[cotunnite]]-type phase was claimed to be the hardest known oxide with the [[Vickers hardness]] of 38 GPa and the [[bulk modulus]] of 431 GPa (i.e. close to diamond's value of 446 GPa) at atmospheric pressure.<ref name=du1/> However, later studies came to different conclusions with much lower values for both the hardness (7–20 GPa, which makes it softer than common oxides like corundum Al<sub>2</sub>O<sub>3</sub> and rutile TiO<sub>2</sub>)<ref>{{cite journal |author1=Oganov A.R. |author2=Lyakhov A.O. |title= Towards the theory of hardness of materials |year= 2010|journal= Journal of Superhard Materials |volume= 32|pages= 143–147|doi= 10.3103/S1063457610030019|issue= 3|arxiv= 1009.5477|bibcode=2010JSMat..32..143O|s2cid=119280867 }}</ref> and bulk modulus (~300 GPa).<ref>{{cite journal |author1=Al-Khatatbeh, Y. |author2=Lee, K. K. M. |author3=Kiefer, B. |title= High-pressure behavior of TiO<sub>2</sub> as determined by experiment and theory|year= 2009|journal= Phys. Rev. B |volume= 79|page= 134114|doi=10.1103/PhysRevB.79.134114|issue= 13|bibcode= 2009PhRvB..79m4114A}}</ref><ref>{{cite journal |author1=Nishio-Hamane D. |author2=Shimizu A. |author3=Nakahira R. |author4=Niwa K. |author5=Sano-Furukawa A. |author6=Okada T. |author7=Yagi T. |author8=Kikegawa T. |title= The stability and equation of state for the cotunnite phase of TiO<sub>2</sub> up to 70 GPa|year= 2010|journal= Phys. Chem. Miner. |volume= 37|pages= 129–136|doi=10.1007/s00269-009-0316-0|issue= 3|bibcode= 2010PCM....37..129N|s2cid=95463163 }}</ref> Titanium dioxide (B) is found as a [[mineral]] in magmatic rocks and hydrothermal veins, as well as weathering rims on [[perovskite]]. TiO<sub>2</sub> also forms [[lamella (materials)|lamellae]] in other minerals.<ref>{{cite journal |author1= Banfield, J. F.|author2=Veblen, D. R.|author3=Smith, D. J. |title= The identification of naturally occurring TiO<sub>2</sub> (B) by structure determination using high-resolution electron microscopy, image simulation, and distance–least–squares refinement|journal= American Mineralogist|url=http://www.minsocam.org/ammin/AM76/AM76_343.pdf |year= 1991 |volume= 76|page= 343}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)