Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transcendental function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== The following functions are transcendental: <math display="block">\begin{align} f_1(x) &= x^\pi \\[2pt] f_2(x) &= e^x \\[2pt] f_3(x) &= \log_e{x} \\[2pt] f_4(x) &= \cosh{x} \\ f_5(x) &= \sinh{x} \\ f_6(x) &= \tanh{x} \\ f_7(x) &= \sinh^{-1}{x} \\[2pt] f_8(x) &= \tanh^{-1}{x} \\[2pt] f_9(x) &= \cos{x} \\ f_{10}(x) &= \sin{x} \\ f_{11}(x) &= \tan{x} \\ f_{12}(x) &= \sin^{-1}{x} \\[2pt] f_{13}(x) &= \tan^{-1}{x} \\[2pt] f_{14}(x) &= x! \\ f_{15}(x) &= 1/x! \\[2pt] f_{16}(x) &= x^x \\[2pt] \end{align}</math> For the first function <math>f_1(x)</math>, the exponent ''<math>\pi</math>'' can be replaced by any other irrational number, and the function will remain transcendental. For the second and third functions <math>f_2(x)</math> and <math>f_3(x)</math>, the base ''<math>e</math>'' can be replaced by any other positive real number base not equaling 1, and the functions will remain transcendental. Functions 4-8 denote the hyperbolic trigonometric functions, while functions 9-13 denote the circular trigonometric functions. The fourteenth function <math>f_{14}(x)</math> denotes the analytic extension of the factorial function via the [[gamma function]], and <math>f_{15}(x)</math> is its reciprocal, an entire function. Finally, in the last function <math>f_{16}(x)</math>, the exponent <math>x</math> can be replaced by <math>kx</math> for any nonzero real <math>k</math>, and the function will remain transcendental.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)