Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transcendental number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Numbers proven to be transcendental== Numbers proven to be transcendental: * [[pi|{{mvar|Ď}}]] (by the [[LindemannâWeierstrass theorem]]). * {{math|<math>e^a</math>}} if {{Math|<math>a</math>}} is [[Algebraic number|algebraic]] and nonzero (by the LindemannâWeierstrass theorem), in particular [[E (mathematical constant)|Euler's number]] {{mvar|e}}. * {{math|<math> e^{\pi \sqrt n} </math>}} where {{math|<math>n</math>}} is a positive integer; in particular [[Gelfond's constant]] {{math|<math>e^\pi</math>}} (by the [[GelfondâSchneider theorem]]). * Algebraic combinations of {{math|<math>\pi </math>}} and {{math|<math> e^{\pi \sqrt n} , n\in\mathbb Z^{+}</math>}} such as {{math|<math> \pi + e^{\pi}</math>}} and {{math|<math> \pi e^{\pi}</math>}} (following from their [[algebraic independence]]).<ref name=":2">{{Cite journal |last=Nesterenko |first=Yu V |date=1996-10-31 |title=Modular functions and transcendence questions |url=https://iopscience.iop.org/article/10.1070/SM1996v187n09ABEH000158 |journal=Sbornik: Mathematics |volume=187 |issue=9 |pages=1319â1348 |doi=10.1070/SM1996v187n09ABEH000158 |bibcode=1996SbMat.187.1319N |issn=1064-5616}}</ref> * {{math|<math>a^b</math>}} where {{Math|<math>a</math>}} is algebraic but not 0 or 1, and {{Math|<math>b</math>}} is irrational algebraic, in particular the [[GelfondâSchneider constant]] <math>2^{\sqrt{2}}</math> (by the GelfondâSchneider theorem). * The [[natural logarithm]] {{math|<math>\ln(a)</math>}} if {{math|<math>a</math>}} is algebraic and not equal to 0 or 1, for any branch of the logarithm function (by the LindemannâWeierstrass theorem). * {{math|<math>\log_b(a)</math>}} if {{math|<math>a</math>}} and {{math|<math>b</math>}} are positive integers not both powers of the same integer, and {{math|<math>a</math>}} is not equal to 1 (by the GelfondâSchneider theorem). * All numbers of the form <math>\pi + \beta_1 \ln (a_1) + \cdots + \beta_n \ln (a_n)</math> are transcendental, where <math>\beta_j</math> are algebraic for all <math>1 \leq j \leq n</math> and <math>a_j</math> are non-zero algebraic for all <math>1 \leq j \leq n</math> (by [[Baker's theorem]]). *The [[trigonometric functions]] {{math|<math>\sin(x), \cos(x), ...</math>}} and their [[Hyperbolic functions|hyperbolic counterparts]], for any nonzero algebraic number {{math|<math>x</math>}}, expressed in [[radian]]s (by the LindemannâWeierstrass theorem). *Non-zero results of the [[inverse trigonometric functions]] {{math|<math>\arcsin(x), \arccos(x), ...</math>}} and their [[Inverse hyperbolic functions|hyperbolic counterparts]], for any algebraic number {{math|<math>x</math>}} (by the LindemannâWeierstrass theorem). *<math>\pi^{-1}{\arctan(x)}</math>, for rational {{math|<math>x</math>}} such that <math>x \notin \{0,\pm{1}\}</math>.<ref name=":1">{{Cite web |last=Weisstein |first=Eric W. |title=Transcendental Number |url=https://mathworld.wolfram.com/TranscendentalNumber.html |access-date=2023-08-09 |website=mathworld.wolfram.com |language=en}}</ref> *The [[Fixed-point iteration#Attracting fixed points|fixed point]] of the cosine function (also referred to as the [[Dottie number]] {{math|<math>d</math>}}) â the unique real solution to the equation {{math|<math>\cos(x)=x</math>}}, where {{math|<math>x</math>}} is in radians (by the LindemannâWeierstrass theorem).<ref name="wolfram_dottie">{{cite web|last1=Weisstein|first1=Eric W.|title=Dottie Number|url=http://mathworld.wolfram.com/DottieNumber.html|website=Wolfram MathWorld|publisher=Wolfram Research, Inc.|access-date=23 July 2016}}</ref> *{{math|<math>W(a)</math>}} if {{math|<math>a</math>}} is algebraic and nonzero, for any branch of the [[Lambert W function|Lambert W Function]] (by the LindemannâWeierstrass theorem), in particular the [[omega constant]] {{math|Ί}}. * {{math|<math>W(r,a)</math>}} if both {{math|<math>a</math>}} and the order {{math|<math>r</math>}} are algebraic such that <math>a \neq 0</math>, for any branch of the generalized Lambert W function.<ref>{{Cite arXiv |eprint=1408.3999 |class=math.CA |first1=IstvĂĄn |last1=MezĹ |first2=ĂrpĂĄd |last2=Baricz |title=On the generalization of the Lambert W function |date=June 22, 2015}}</ref> * {{math|<math>\sqrt x _s</math>}}, the [[Tetration#Square super-root|square super-root]] of any natural number is either an integer or transcendental (by the GelfondâSchneider theorem). * Values of the [[gamma function]] of rational numbers that are of the form <math>\Gamma(n/2),\Gamma(n/3),\Gamma(n/4)</math> or <math>\Gamma(n/6)</math>.<ref>{{Cite book |last=Chudnovsky |first=G. |title=Contributions to the theory of transcendental numbers |date=1984 |publisher=American Mathematical Society |isbn=978-0-8218-1500-7 |series=Mathematical surveys and monographs |location=Providence, R.I |language=en, ru}}</ref> * Algebraic combinations of {{math|<math>\pi </math>}} and {{math|<math>\Gamma(1/3)</math>}} or of {{math|<math>\pi </math>}} and {{math|<math>\Gamma(1/4)</math>}} such as the [[lemniscate constant]] <math>\varpi</math> (following from their respective algebraic independences).<ref name=":2" /> * The values of [[Beta function]] <math>\Beta(a,b)</math> if <math>a, b</math> and <math>a+b</math> are non-integer rational numbers.<ref name=":3">{{Cite web |last=Waldschmidt |first=Michel |date=September 7, 2005 |title=Transcendence of Periods: The State of the Art |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TranscendencePeriods.pdf |website=webusers.imj-prg.fr}}</ref> * The [[Bessel function|Bessel function of the first kind]] {{math|<math>J_\nu(x)</math>}}, its first derivative, and the quotient <math>\tfrac{J'_\nu (x)}{J_\nu (x)}</math> are transcendental when ''{{math|<math>\nu</math>}}'' is rational and ''{{math|<math>x</math>}}'' is algebraic and nonzero,<ref>{{cite book |last1=Siegel |first1=Carl L. |title=On Some Applications of Diophantine Approximations |chapter=Ăber einige Anwendungen diophantischer Approximationen: Abhandlungen der PreuĂischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1 |date=2014 |publisher=Scuola Normale Superiore |isbn=978-88-7642-520-2 |pages=81â138 |chapter-url=https://doi.org/10.1007/978-88-7642-520-2_2 |language=de |doi=10.1007/978-88-7642-520-2_2 }}</ref> and all nonzero roots of {{math|<math>J_\nu(x)</math>}} and {{math|<math>J'_\nu(x)</math>}} are transcendental when ''{{math|<math>\nu</math>}}'' is rational.<ref>{{cite journal |last1=Lorch |first1=Lee |last2=Muldoon |first2=Martin E. |title=Transcendentality of zeros of higher dereivatives of functions involving Bessel functions |journal=International Journal of Mathematics and Mathematical Sciences |date=1995 |volume=18 |issue=3 |pages=551â560 |doi=10.1155/S0161171295000706 |doi-access=free }}</ref> * The number <math>\tfrac{\pi}{2} \tfrac{Y_0 (2)}{J_0 (2)} - \gamma</math>, where {{math|<math>Y_\alpha(x)</math>}} and {{math|<math>J_\alpha(x)</math>}} are Bessel functions and {{math|<math>\gamma</math>}} is the [[EulerâMascheroni constant]].<ref>{{Cite journal |last1=Mahler |first1=Kurt |last2=Mordell |first2=Louis Joel |date=1968-06-04 |title=Applications of a theorem by A. B. Shidlovski |url=https://royalsocietypublishing.org/doi/10.1098/rspa.1968.0111 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=305 |issue=1481 |pages=149â173 |bibcode=1968RSPSA.305..149M |doi=10.1098/rspa.1968.0111 |s2cid=123486171}}</ref><ref>{{Cite journal |last=Lagarias |first=Jeffrey C. |date=2013-07-19 |title=Euler's constant: Euler's work and modern developments |journal=Bulletin of the American Mathematical Society |volume=50 |issue=4 |pages=527â628 |arxiv=1303.1856 |doi=10.1090/S0273-0979-2013-01423-X |issn=0273-0979 |doi-access=free}}</ref> * Values of the [[Reciprocal Fibonacci constant|Fibonacci zeta function]] at the positive even argument.<ref name="Murty2013">{{citation |last = Murty | first = M. Ram | editor1-last = Prasad | editor1-first = D. | editor2-last = Rajan | editor2-first = C. S. | editor3-last = Sankaranarayanan | editor3-first = A. | editor4-last = Sengupta | editor4-first = J. | contribution = The Fibonacci zeta function | isbn = 978-93-80250-49-6 | mr = 3156859 | pages = 409â425 | publisher = Tata Institute of Fundamental Research | series = Tata Institute of Fundamental Research Studies in Mathematics | title = Automorphic representations and {{mvar|L}}-functions | volume = 22 | year = 2013}}</ref> * Any [[Liouville number]], in particular: Liouville's constant <math>\sum_{k=1}^\infty\frac1{10^{k!}}</math>. * Numbers with [[irrationality measure]] larger than 2, such as the [[Champernowne constant]] <math>C_{10}</math> (by [[Roth's theorem]]). * Numbers artificially constructed not to be [[Period (algebraic geometry)|algebraic periods]].<ref>{{cite arXiv |eprint=0805.0349 |class=math.AG |first=Masahiko |last=Yoshinaga |title=Periods and elementary real numbers |date=2008-05-03}}</ref> * Any [[non-computable number]], in particular: [[Chaitin's constant]]. * Constructed irrational numbers which are not simply [[Normal number|normal]] in any base.{{sfn|Bugeaud|2012|page=113}} * Any number for which the digits with respect to some fixed base form a [[Sturmian word]].<ref>{{harvnb|Pytheas Fogg|2002}}</ref> * The [[ProuhetâThueâMorse constant]]<ref>{{harvnb|Mahler|1929}}; {{harvnb|Allouche|Shallit|2003|p=387}}</ref> and the related rabbit constant.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Rabbit Constant |url=https://mathworld.wolfram.com/ |access-date=2023-08-09 |website=mathworld.wolfram.com |language=en}}</ref> * The [[KomornikâLoreti constant]].<ref>{{citation |last1=Allouche |first1=Jean-Paul |title=The KomornikâLoreti constant is transcendental |journal=American Mathematical Monthly |volume=107 |issue=5 |pages=448â449 |year=2000 |doi=10.2307/2695302 |jstor=2695302 |mr=1763399 |last2=Cosnard |first2=Michel}}</ref> * The [[Regular paperfolding sequence|paperfolding constant]] (also named as "Gaussian Liouville number").<ref>{{Cite web |title=A143347 - OEIS |url=https://oeis.org/A143347 |access-date=2023-08-09 |website=oeis.org}}</ref> * The values of the infinite series with fast [[Rate of convergence|convergence rate]] as defined by Y. Gao and J. Gao, such as <math>\sum_{n=1}^\infty \frac{3^n}{2^{3^n}}</math>.<ref>{{Cite web |title=A140654 - OEIS |url=https://oeis.org/A140654 |access-date=2023-08-12 |website=oeis.org}}</ref> * Any number of the form <math>\sum_{n=0}^\infty \frac{E_n(\beta^{r^n})}{F_n(\beta^{r^n})}</math> (where <math>E_n(z)</math>, <math>F_n(z)</math> are polynomials in variables <math>n</math> and <math>z</math>, <math>\beta</math> is algebraic and <math>\beta \neq 0</math>, <math>r</math> is any integer greater than 1).<ref>{{Cite journal |last=Kurosawa |first=Takeshi |date=2007-03-01 |title=Transcendence of certain series involving binary linear recurrences |journal=Journal of Number Theory |language=en |volume=123 |issue=1 |pages=35â58 |doi=10.1016/j.jnt.2006.05.019 |issn=0022-314X |doi-access=free}}</ref> * Numbers of the form <math>\sum_{k=0}^\infty 10^{-b^k}</math> and <math>\sum_{k=0}^\infty 10^{-\left\lfloor b^{k} \right\rfloor}</math> For {{math|b > 1}} where <math>b \mapsto\lfloor b \rfloor</math> is the [[floor function]].<ref name="Kempner" /><ref>{{Cite arXiv |eprint=1303.1685 |class=math.NT |first=Boris |last=Adamczewski |title=The Many Faces of the Kempner Number |date=March 2013}}</ref><ref name="Sha1999">{{harvnb|Shallit|1996}}</ref><ref>{{Cite journal |last1=Adamczewski |first1=Boris |last2=Rivoal |first2=Tanguy | authorlink2=Tanguy Rivoal |date=2009 |title=Irrationality measures for some automatic real numbers |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/irrationality-measures-for-some-automatic-real-numbers/F89F4B7BBC9A06B6E9934FB2C3AFFE4D |journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |language=en |volume=147 |issue=3 |pages=659â678 |doi=10.1017/S0305004109002643 |bibcode=2009MPCPS.147..659A |issn=1469-8064}}</ref><ref name="Lox1988">{{harvnb|Loxton|1988}}</ref><ref>{{harvnb|Allouche|Shallit|2003|pp=385,403}}</ref> * The numbers <math>\alpha = 3.3003300000...</math> and <math> \alpha^{-1} = 0.3030000030...</math> with only two different decimal digits whose nonzero digit positions are given by the [[Moserâde Bruijn sequence]] and its double.<ref>{{harvnb|Blanchard|Mendès France|1982}}</ref> * The values of the [[RogersâRamanujan continued fraction|Rogers-Ramanujan continued fraction]] <math>R(q)</math> where <math>{{q}} \in \mathbb C</math> is algebraic and <math>0 < |q| < 1</math>.<ref>{{Cite journal |last1=Duverney |first1=Daniel |last2=Nishioka |first2=Keiji |last3=Nishioka |first3=Kumiko |last4=Shiokawa |first4=Iekata |date=1997 |title=Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers |journal=Proceedings of the Japan Academy, Series A, Mathematical Sciences |volume=73 |issue=7 |pages=140â142 |doi=10.3792/pjaa.73.140 |issn=0386-2194 |doi-access=free}}</ref> The lemniscatic values of [[theta function]] <math>\sum_{n=-\infty}^\infty q^{n^2}</math> (under the same conditions for <math>{{q}}</math>) are also transcendental.<ref>{{Cite journal |last=Bertrand |first=Daniel |date=1997 |title=Theta functions and transcendence |url=http://link.springer.com/10.1023/A:1009749608672 |journal=The Ramanujan Journal |volume=1 |issue=4 |pages=339â350 |doi=10.1023/A:1009749608672 |s2cid=118628723}}</ref> * {{math|''[[j-invariant|j]]''(''q'')}} where <math>{{q}} \in \mathbb C</math> is algebraic but not imaginary quadratic (i.e, the [[Transcendental function|exceptional set]] of this function is the number field whose degree of [[Field extension|extension]] over <math>\mathbb Q</math> is 2). * The constants <math>\epsilon_k</math> and <math>\nu_k</math> in the formula for first index of occurrence of [[Gijswijt's sequence]], where k is any integer greater than 1.<ref>{{cite arXiv |eprint=2209.04657 |first=Levi |last=van de Pol |title=The first occurrence of a number in Gijswijt's sequence|date=2022 |class=math.CO }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)