Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triangulation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In computer vision=== {{main|Triangulation (computer vision)}} [[Computer stereo vision]] and [[optical 3D measuring]] systems use this principle to determine the spatial dimensions and the geometry of an item.<ref name="LuhmannRobson2013">{{cite book|author1=Thomas Luhmann|author2=Stuart Robson|author3=Stephen Kyle|author4=Jan Boehm|title=Close-Range Photogrammetry and 3D Imaging|url=https://books.google.com/books?id=_f7oBQAAQBAJ&q=%22optical%203D%20measuring%22|date=27 November 2013|publisher=De Gruyter|isbn=978-3-11-030278-3}}</ref> Basically, the configuration consists of two sensors observing the item. One of the sensors is typically a digital camera device, and the other one can also be a camera or a light projector. The projection centers of the sensors and the considered point on the object's surface define a (spatial) triangle. Within this triangle, the distance between the sensors is the base ''b'' and must be known. By determining the angles between the projection rays of the sensors and the basis, the intersection point, and thus the 3D coordinate, is calculated from the triangular relations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)