Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triassic–Jurassic extinction event
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Marine invertebrates === The Triassic-Jurassic extinction completed the transition from the Palaeozoic [[evolutionary fauna]] to the Modern evolutionary fauna that continues to dominate the oceans in the present,<ref>{{cite journal |last1=Schoepfer |first1=Shane D. |last2=Algeo |first2=Thomas J. |last3=Van de Schootbrugge |first3=Bas |last4=Whiteside |first4=Jessica H. |date=September 2022 |title=The Triassic–Jurassic transition – A review of environmental change at the dawn of modern life |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825222001830 |journal=[[Earth-Science Reviews]] |volume=232 |page=104099 |doi=10.1016/j.earscirev.2022.104099 |bibcode=2022ESRv..23204099S |hdl=1874/425545 |s2cid=250256142 |access-date=1 February 2023|hdl-access=free }}</ref> a change that began in the aftermath of the [[end-Guadalupian extinction]]<ref name="DeLaHorraEtAl2012">{{cite journal |last1=De la Horra |first1=R. |last2=Galán-Abellán |first2=A. B. |last3=López-Gómez |first3=José |last4=Sheldon |first4=Nathan D. |last5=Barrenechea |first5=J. F. |last6=Luque |first6=F. J. |last7=Arche |first7=A. |last8=Benito |first8=M. I. |date=August–September 2012 |title=Paleoecological and paleoenvironmental changes during the continental Middle–Late Permian transition at the SE Iberian Ranges, Spain |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818112001221 |journal=[[Global and Planetary Change]] |volume=94–95 |pages=46–61 |doi=10.1016/j.gloplacha.2012.06.008 |bibcode=2012GPC....94...46D |access-date=15 December 2022|hdl=10261/59010 |hdl-access=free }}</ref> and continued following the [[Permian–Triassic extinction event|Permian-Triassic extinction event]] (PTME).<ref>{{cite journal | last1 = Brayard | first1 = Arnaud | last2 = Krumenacker | first2 = L. J. | last3 = Botting | first3 = Joseph P. | last4 = Jenks | first4 = James F. | last5 = Bylund | first5 = Kevin G. | last6 = Fara | first6 = Emmanuel | last7 = Vennin | first7 = Emmanuelle | last8 = Olivier | first8 = Nicolas | last9 = Goudemand | first9 = Nicolas | last10 = Saucède | first10 = Thomas | last11 = Charbonnier | first11 = Sylvain | last12 = Romano | first12 = Carlo | last13 = Doguzhaeva | first13 = Larisa | last14 = Thuy | first14 = Ben | last15 = Hautmann | first15 = Michael | last16 = Stephen | first16 = Daniel A. | last17 = Thomazo | first17 = Christophe | last18 = Escarguel | first18 = Gilles | title = Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna | journal = [[Science Advances]] | volume = 13 | issue = 2 | pages = e1602159 | date = 15 February 2017 | doi = 10.1126/sciadv.1602159 | pmid = 28246643 | pmc = 5310825 | bibcode = 2017SciA....3E2159B }}</ref> Between 23% and 34.1% of marine genera went extinct.<ref name="JackSepkoski" /><ref name="GrahamRyderBook">{{cite book |last1=Ryder |first1=Graham |url=https://books.google.com/books?id=kAup0TOL09gC&pg=PA19 |title=The Cretaceous-Tertiary Event and Other Catastrophes in Earth History |last2=Fastovsky |first2=David E. |last3=Gartner |first3=Stefan |publisher=[[Geological Society of America]] |year=1996 |isbn=9780813723075 |page=19}}</ref> [[Plankton]] diversity dropped suddenly,<ref name="PeterWard2001"">{{cite journal |last1=Ward |first1=Peter Douglas |last2=Haggart |first2=J.W. |last3=Carter |first3=E.S. |last4=Wilbur |first4=D. |last5=Tipper |first5=H.W. |last6=Evans |first6=T. |date=11 May 2001 |title=Sudden Productivity Collapse Associated with the Triassic-Jurassic Boundary Mass Extinction |url=https://www.science.org/doi/10.1126/science.1058574 |journal=[[Science (journal)|Science]] |volume=292 |issue=5519 |pages=1148–1151 |bibcode=2001Sci...292.1148W |doi=10.1126/science.1058574 |pmid=11349146 |s2cid=36667702 |access-date=23 November 2022|url-access=subscription }}</ref> but it was relatively mildly impacted at the Triassic-Jurassic boundary, although extinction rates among radiolarians rose significantly.<ref>{{cite journal |last1=Kocsis |first1=Ádám T. |last2=Kiessling |first2=Wolfgang |last3=Pálfy |first3=József |date=8 April 2016 |title=Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/radiolarian-biodiversity-dynamics-through-the-triassic-and-jurassic-implications-for-proximate-causes-of-the-endtriassic-mass-extinction/0986175366656DEE63909EF57FCFA87B |journal=[[Paleobiology (journal)|Paleobiology]] |volume=40 |issue=4 |pages=625–639 |doi=10.1666/14007 |s2cid=129600881 |access-date=28 May 2023|url-access=subscription }}</ref> Early Hettangian radiolarian communities became depauperate as a result of the TJME and consisted mainly of spumellarians and entactiniids.<ref>{{Cite journal |last=Longridge |first=Louise M. |last2=Carter |first2=Elizabeth S. |last3=Smith |first3=Paul L. |last4=Tipper |first4=Howard W. |date=9 February 2007 |title=Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic–Jurassic boundary |url=https://www.sciencedirect.com/science/article/abs/pii/S0016699512000526?via%3Dihub |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=142–169 |doi=10.1016/j.palaeo.2006.06.027 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Benthic foraminifera suffered relatively minor losses of diversity.<ref>{{Cite journal |last=Pálfy |first=József |last2=Demény |first2=Attila |last3=Haas |first3=János |last4=Carter |first4=Elizabeth S. |last5=Görög |first5=Ágnes |last6=Halász |first6=Dóra |last7=Oravecz-Scheffer |first7=Anna |last8=Hetényi |first8=Magdolna |last9=Márton |first9=Emő |last10=Orchard |first10=Michael J. |last11=Ozsvárt |first11=Péter |last12=Vető |first12=István |last13=Zajzon |first13=Norbert |date=9 February 2007 |title=Triassic–Jurassic boundary events inferred from integrated stratigraphy of the Csővár section, Hungary |url=https://www.sciencedirect.com/science/article/pii/S0031018206004391 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=11–33 |doi=10.1016/j.palaeo.2006.06.021 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Some opportunistic foraminifera such as ''Triasina hantkeni'' increased in abundance as they thrived in oxygen-depleted waters.<ref>{{Cite journal |last=Ciarapica |first=Gloria |date=9 February 2007 |title=Regional and global changes around the Triassic–Jurassic boundary reflected in the late Norian–Hettangian history of the Apennine basins |url=https://www.sciencedirect.com/science/article/pii/S0031018206004408 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=34–51 |doi=10.1016/j.palaeo.2006.06.022 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> [[Ammonoidea|Ammonites]] were affected substantially by the Triassic-Jurassic extinction and were nearly wiped out.<ref>{{Cite journal |last1=Smith |first1=Paul L. |last2=Longridge |first2=Louise M. |last3=Grey |first3=Melissa |last4=Zhang |first4=Jin |last5=Liang |first5=Bo |date=4 January 2014 |title=From near extinction to recovery: Late Triassic to Middle Jurassic ammonoid shell geometry |url=https://www.idunn.no/doi/10.1111/let.12058 |journal=[[Lethaia]] |language=en |volume=47 |issue=3 |pages=337–351 |doi=10.1111/let.12058 |issn=0024-1164 |access-date=28 October 2024|hdl=2429/45186 |hdl-access=free }}</ref> [[Ceratitida]]ns, the most prominent group of ammonites in the Triassic, became extinct at the end of the [[Rhaetian]] after having their diversity reduced significantly in the [[Norian]], while other ammonite groups such as the [[Ammonitina]], [[Lytoceratina]], and [[Phylloceratina]] diversified from the [[Early Jurassic]] onward.<ref name="TannerLucas">{{cite journal |vauthors=Tanner LH, Lucas SG, Chapman MG |date=2004 |title=Assessing the record and causes of Late Triassic extinctions |url=http://nmnaturalhistory.org/pdf_files/TJB.pdf |journal=[[Earth-Science Reviews]] |volume=65 |issue=1–2 |pages=103–139 |bibcode=2004ESRv...65..103T |doi=10.1016/S0012-8252(03)00082-5 |archive-url=https://web.archive.org/web/20071025225841/http://nmnaturalhistory.org/pdf_files/TJB.pdf |archive-date=October 25, 2007 |access-date=2007-10-22}}</ref> Bivalves suffered heavy losses, although the extinction was highly selective, with some bivalve clades escaping substantial diversity losses.<ref>{{Cite journal |last1=Ros |first1=Sonia |last2=Echevarría |first2=Javier |date=25 July 2011 |title=Bivalves and evolutionary resilience: old skills and new strategies to recover from the P/T and T/J extinction events |url=http://www.tandfonline.com/doi/abs/10.1080/08912963.2011.578744 |journal=[[Historical Biology]] |language=en |volume=23 |issue=4 |pages=411–429 |doi=10.1080/08912963.2011.578744 |hdl=11336/79657 |issn=0891-2963 |access-date=28 October 2024 |via=Taylor and Francis Online|hdl-access=free }}</ref> The [[Lilliput effect]], a term coined to describe a phenomenon wherein organisms shrink in size following a mass extinction, affected [[Megalodontidae|megalodontid]] bivalves,<ref>{{cite journal |last1=Todaro |first1=Simona |last2=Rigo |first2=Manuel |last3=Randazzo |first3=Vincenzo |last4=Di Stefano |first4=Pietro |date=June 2018 |title=The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily |url=https://www.sciencedirect.com/science/article/abs/pii/S0037073818300484 |journal=[[Sedimentary Geology (journal)|Sedimentary Geology]] |volume=368 |pages=105–113 |doi=10.1016/j.sedgeo.2018.03.008 |bibcode=2018SedG..368..105T |s2cid=134941587 |access-date=27 August 2023|url-access=subscription }}</ref> whereas [[Limidae|file shell]] bivalves experienced the Brobdingnag effect, the reverse of the Lilliput effect.<ref>{{cite journal |last1=Atkinson |first1=Jed W. |last2=Wignall |first2=Paul B. |last3=Morton |first3=Jacob D. |last4=Aze |first4=Tracy |date=9 January 2019 |title=Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect |url=https://onlinelibrary.wiley.com/doi/10.1111/pala.12415 |journal=[[Palaeontology (journal)|Palaeontology]] |volume=62 |issue=4 |pages=561–582 |doi=10.1111/pala.12415 |bibcode=2019Palgy..62..561A |s2cid=134070316 |access-date=14 January 2023}}</ref> There is some evidence of a bivalve cosmopolitanism event during the mass extinction.<ref>{{cite journal |last1=Yan |first1=Jia |last2=Song |first2=Haijun |last3=Dai |first3=Xu |date=1 February 2023 |title=Increased bivalve cosmopolitanism during the mid-Phanerozoic mass extinctions |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018222005338 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=611 |page=111362 |doi=10.1016/j.palaeo.2022.111362 |bibcode=2023PPP...61111362Y |access-date=20 February 2023|url-access=subscription }}</ref> Additionally, following the TJME, mobile bivalve taxa outnumbered stationary bivalve taxa.<ref>{{Cite journal |last1=Abdelhady |first1=Ahmed A. |last2=Ali |first2=Ahmed |last3=Ahmed |first3=Mohamed S. |last4=Elewa |first4=Ashraf M. T. |date=8 September 2023 |title=Triassic/Jurassic bivalve biodiversity dynamics: biotic versus abiotic factors |url=https://link.springer.com/10.1007/s12517-023-11657-x |journal=Arabian Journal of Geosciences |language=en |volume=16 |issue=10 |doi=10.1007/s12517-023-11657-x |issn=1866-7511 |access-date=11 September 2024 |via=Springer Link|url-access=subscription }}</ref> [[Gastropoda|Gastropod]] diversity was barely affected at the Triassic-Jurassic boundary, although gastropods gradually suffered numerous losses over the late Norian and Rhaetian, during the leadup to the TJME.<ref>{{cite journal |last1=Hallam |first1=Anthony |date=2 January 2007 |title=How catastrophic was the end-Triassic mass extinction? |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1502-3931.2002.tb00075.x |journal=[[Lethaia]] |volume=35 |issue=2 |pages=147–157 |doi=10.1111/j.1502-3931.2002.tb00075.x |access-date=28 May 2023|url-access=subscription }}</ref> Brachiopods declined in diversity at the end of the Triassic before rediversifying in the [[Sinemurian]] and [[Pliensbachian]];<ref>{{cite journal |last1=Baeza-Carratalá |first1=José Francisco |last2=Dulai |first2=Alfréd |last3=Sandoval |first3=José |date=October 2018 |title=First evidence of brachiopod diversification after the end-Triassic extinction from the pre-Pliensbachian Internal Subbetic platform (South-Iberian Paleomargin) |url=https://www.sciencedirect.com/science/article/abs/pii/S0016699518300445 |journal=[[Geobios]] |volume=51 |issue=5 |pages=367–384 |doi=10.1016/j.geobios.2018.08.010 |bibcode=2018Geobi..51..367B |hdl=10045/81989 |s2cid=134589701 |access-date=22 May 2023|hdl-access=free }}</ref> the dielasmatoid, athyridoid, and spondylospiroid brachiopods experienced particularly severe declines.<ref>{{Cite journal |last=Tomašových |first=Adam |last2=Siblík |first2=Miloš |date=9 February 2007 |title=Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): Removal of dominant groups, recovery and community reassembly |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018206004482 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=170–200 |doi=10.1016/j.palaeo.2006.06.028 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> Bryozoans, particularly taxa that lived in offshore settings, had already been in decline since the Norian and suffered further losses in the TJME.<ref>{{Cite journal |last1=Powers |first1=Catherine M. |last2=Bottjer |first2=David J. |date=1 November 2007 |title=Bryozoan paleoecology indicates mid-Phanerozoic extinctions were the product of long-term environmental stress |url=https://pubs.geoscienceworld.org/geology/article/35/11/995-998/129752 |journal=[[Geology (journal)|Geology]] |language=en |volume=35 |issue=11 |pages=995 |doi=10.1130/G23858A.1 |bibcode=2007Geo....35..995P |issn=0091-7613 |access-date=30 December 2023|url-access=subscription }}</ref> [[Ostracod|Ostracods]] also suffered significant losses,<ref>{{Cite journal |last=Wignall |first=Paul Barry |last2=Atkinson |first2=Jed W. |date=September 2020 |title=A two-phase end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/pii/S0012825220303287 |journal=[[Earth-Science Reviews]] |language=en |volume=208 |pages=103282 |doi=10.1016/j.earscirev.2020.103282 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> although opportunistic ostracod forms thrived in the eutrophic conditions of the TJME.<ref>{{Cite journal |last=Michalík |first=Jozef |last2=Lintnerová |first2=Otília |last3=Gaździcki |first3=Andrzej |last4=Soták |first4=Ján |date=9 February 2007 |title=Record of environmental changes in the Triassic–Jurassic boundary interval in the Zliechov Basin, Western Carpathians |url=https://www.sciencedirect.com/science/article/pii/S0031018206004421 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=244 |issue=1-4 |pages=71–88 |doi=10.1016/j.palaeo.2006.06.024 |access-date=19 February 2025 |via=Elsevier Science Direct|url-access=subscription }}</ref> [[Conulariida|Conulariids]] seemingly completely died out at the end of the Triassic.<ref name="TannerLucas" /> Around 96% of coral genera died out, with integrated corals being especially devastated.<ref>{{cite journal |last1=Stanley Jr. |first1=George D. |last2=Shepherd |first2=Hannah M. E. |last3=Robinson |first3=Autumn J. |date=14 August 2018 |title=Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis |url=https://link.springer.com/article/10.1007/s12583-018-0793-5 |journal=Journal of Earth Science |volume=29 |issue=4 |pages=879–885 |doi=10.1007/s12583-018-0793-5 |bibcode=2018JEaSc..29..879S |s2cid=133705370 |access-date=7 June 2023|url-access=subscription }}</ref> Corals practically disappeared from the [[Tethys Ocean]] at the end of the Triassic except for its northernmost reaches,<ref>{{cite journal |last1=Lathuilière |first1=Bernard |last2=Marchal |first2=Denis |date=12 January 2009 |title=Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time |url=https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3121.2008.00856.x |journal=[[Terra Nova (journal)|Terra Nova]] |volume=21 |issue=1 |pages=57–66 |doi=10.1111/j.1365-3121.2008.00856.x |bibcode=2009TeNov..21...57L |s2cid=128758050 |access-date=7 June 2023|url-access=subscription }}</ref> resulting in an early Hettangian "coral gap".<ref name="EarlyHettangianCoralGap">{{cite journal |last1=Martindale |first1=Rowan C. |last2=Berelson |first2=William M. |last3=Corsetti |first3=Frank A. |last4=Bottjer |first4=David J. |last5=West |first5=A. Joshua |date=15 September 2012 |title=Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018212003756 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=350–352 |pages=114–123 |doi=10.1016/j.palaeo.2012.06.020 |bibcode=2012PPP...350..114M |access-date=7 June 2023|url-access=subscription }}</ref> There is good evidence for a collapse in the reef community, which was likely driven by [[ocean acidification]] resulting from {{CO2}} supplied to the atmosphere by the CAMP eruptions.<ref name="GeologicalRecordOceanAcid">{{Cite journal |last1=Hönisch |first1=Bärbel |author-link=Bärbel Hönisch |last2=Ridgwell |first2=Andy |last3=Schmidt |first3=Daniela N. |last4=Thomas |first4=Ellen |author4-link=Ellen Thomas (scientist) |last5=Gibbs |first5=Samantha J. |last6=Sluijs |first6=Appy |last7=Zeebe |first7=Richard |last8=Kump |first8=Lee |last9=Martindale |first9=Rowan C. |last10=Greene |first10=Sarah E. |last11=Kiessling |first11=Wolfgang |date=2012-03-02 |title=The Geological Record of Ocean Acidification |url=https://www.science.org/doi/10.1126/science.1208277 |journal=[[Science (journal)|Science]] |language=en |volume=335 |issue=6072 |pages=1058–1063 |bibcode=2012Sci...335.1058H |doi=10.1126/science.1208277 |issn=0036-8075 |pmid=22383840 |hdl=1874/385704 |s2cid=6361097 |access-date=19 March 2023|hdl-access=free }}</ref><ref name="OceanAcidDepTime">{{Cite journal |last1=Greene |first1=Sarah E. |last2=Martindale |first2=Rowan C. |last3=Ritterbush |first3=Kathleen A. |last4=Bottjer |first4=David J. |last5=Corsetti |first5=Frank A. |last6=Berelson |first6=William M. |date=2012-06-01 |title=Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary |url=http://www.sciencedirect.com/science/article/pii/S0012825212000463 |journal=[[Earth-Science Reviews]] |language=en |volume=113 |issue=1 |pages=72–93|doi=10.1016/j.earscirev.2012.03.009 |bibcode=2012ESRv..113...72G|issn=0012-8252|url-access=subscription }}</ref> Most evidence points to a relatively fast recovery from the mass extinction. [[Benthic_zone|Benthic]] ecosystems recovered far more rapidly after the TJME than they did after the PTME.<ref>{{Cite journal |last1=Barras |first1=Colin G. |last2=Twitchett |first2=Richard J. |date=9 February 2007 |title=Response of the marine infauna to Triassic–Jurassic environmental change: Ichnological data from southern England |url=https://www.sciencedirect.com/science/article/pii/S0031018206004500 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |series=Triassic-Jurassic Boundary events: problems, progress, possibilities |volume=244 |issue=1 |pages=223–241 |doi=10.1016/j.palaeo.2006.06.040 |bibcode=2007PPP...244..223B |issn=0031-0182 |access-date=10 November 2023|url-access=subscription }}</ref> British Early Jurassic benthic marine environments display a relatively rapid recovery that began almost immediately after the end of the mass extinction despite numerous relapses into anoxic conditions during the earliest Jurassic.<ref>{{cite journal |last1=Atkinson |first1=J. W. |last2=Wignall |first2=Paul B. |date=15 August 2019 |title=How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018219302330 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=528 |pages=99–119 |doi=10.1016/j.palaeo.2019.05.011 |bibcode=2019PPP...528...99A |s2cid=164911938 |access-date=20 December 2022}}</ref> In the [[Neuquén Basin]], recovery began in the late early Hettangian and lasted until a new biodiversity equilibrium in the late Hettangian.<ref>{{cite journal |last1=Damborenea |first1=Susana E. |last2=Echevarría |first2=Javier |last3=Ros-Franch |first3=Sonia |date=1 December 2017 |title=Biotic recovery after the end-Triassic extinction event: Evidence from marine bivalves of the Neuquén Basin, Argentina |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018217306946 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=487 |pages=93–104 |doi=10.1016/j.palaeo.2017.08.025 |bibcode=2017PPP...487...93D |access-date=28 May 2023|hdl=11336/49626 |hdl-access=free }}</ref> Also despite recurrent anoxic episodes, large bivalves began to reappear shortly after the extinction event.<ref>{{Cite journal |last1=Opazo |first1=L. Felipe |last2=Twitchett |first2=Richard J. |date=August 2022 |title=Bivalve body-size distribution through the Late Triassic mass extinction event |url=https://www.cambridge.org/core/journals/paleobiology/article/abs/bivalve-bodysize-distribution-through-the-late-triassic-mass-extinction-event/D395EA5BCADCD7CC2EB903ADD14CC95A |journal=[[Paleobiology (journal)|Paleobiology]] |language=en |volume=48 |issue=3 |pages=420–445 |doi=10.1017/pab.2021.38 |issn=0094-8373 |access-date=28 October 2024 |via=Cambridge Core|url-access=subscription }}</ref> Siliceous sponges dominated the immediate aftermath interval thanks to the enormous influx of silica into the oceans,<ref>{{Cite journal |last=Yager |first=Joyce A. |last2=West |first2=A. Joshua |last3=Trower |first3=Elizabeth J. |last4=Fischer |first4=Woodward W. |last5=Ritterbush |first5=Kathleen |last6=Rosas |first6=Silvia |last7=Bottjer |first7=David J. |last8=Celestian |first8=Aaron J. |last9=Berelson |first9=William M. |last10=Corsetti |first10=Frank A. |date=9 January 2025 |title=Evidence for Low Dissolved Silica in mid-Mesozoic Oceans |url=https://ajsonline.org/article/122691-evidence-for-low-dissolved-silica-in-mid-mesozoic-oceans |journal=[[American Journal of Science]] |language=en |volume=325 |doi=10.2475/001c.122691 |issn=1945-452X |access-date=18 February 2025 |via=AJS Online|url-access=subscription }}</ref> a consequence of the aerial extent of the CAMP basalts that were exposed to surficial weathering processes.<ref>{{cite journal |last1=Ritterbrush |first1=Kathleen A. |last2=Bottjer |first2=David J. |last3=Corseti |first3=Frank A. |last4=Rosas |first4=Silvia |date=1 December 2014 |title=New evidence on the role of siliceous sponges in ecology and sedimentary facies development in Eastern Panthalassa following the Triassic-Jurassic mass extinction|url=https://bioone.org/journals/palaios/volume-29/issue-12/palo.2013.121/NEW-EVIDENCE-ON-THE-ROLE-OF-SILICEOUS-SPONGES-IN-ECOLOGY/10.2110/palo.2013.121.short |journal=[[PALAIOS]] |volume=29 |issue=12 |pages=652–668 |doi=10.2110/palo.2013.121 |bibcode=2014Palai..29..652R |s2cid=140546770 |access-date=2 April 2023|url-access=subscription }}</ref><ref>{{Cite journal |last1=Ritterbush |first1=Kathleen A. |last2=Rosas |first2=Silvia |last3=Corsetti |first3=Frank A. |last4=Bottjer |first4=David J. |last5=West |first5=A. Joshua |date=15 February 2015 |title=Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction |url=https://www.sciencedirect.com/science/article/pii/S0031018214005951 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=420 |pages=193–209 |doi=10.1016/j.palaeo.2014.12.002 |bibcode=2015PPP...420..193R |issn=0031-0182 |access-date=10 November 2023|url-access=subscription }}</ref> In some regions, recovery was slow; in the northern Tethys, carbonate platforms in the TJME's aftermath became dominated by microbial carbonate producers and [[r-selected]] calcitic taxa such as ''Thaumatoporella parvovesiculifera'', while dasycladacean algae did not reappear until the Sinemurian [[Stage (stratigraphy)|stage]].<ref>{{Cite journal |last=Montanaro |first=Andrea |last2=Falzoni |first2=Francesca |last3=Iannace |first3=Alessandro |last4=Parente |first4=Mariano |date=1 September 2024 |title=Patterns of extinction and recovery across the Triassic–Jurassic boundary interval in three resilient Southern Tethyan carbonate platforms |url=https://www.sciencedirect.com/science/article/pii/S0031018224003249 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=649 |pages=112335 |doi=10.1016/j.palaeo.2024.112335 |access-date=18 February 2025 |via=Elsevier Science Direct|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)