Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tridiagonal matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Inversion=== The [[inverse matrix|inverse]] of a non-singular tridiagonal matrix ''T'' :<math>T = \begin{pmatrix} a_1 & b_1 \\ c_1 & a_2 & b_2 \\ & c_2 & \ddots & \ddots \\ & & \ddots & \ddots & b_{n-1} \\ & & & c_{n-1} & a_n \end{pmatrix}</math> is given by<!-- (T^{-1})_{ij} = \begin{cases} (-1)^{j-i}b_i \cdots b_{j-1} \theta_{i-1} \phi_{j+1}/\theta_n & \text{ if } i < j\\ \theta_{i-1} \phi_{j+1}/\theta_n & \text{ if } i = j\\ (-1)^{i-j}c_j \cdots c_{i-1} \theta_{j-1} \phi_{i+1}/\theta_n & \text{ if } i > j\\ \end{cases} Correction!? --> :<math>(T^{-1})_{ij} = \begin{cases} (-1)^{i+j}b_i \cdots b_{j-1} \theta_{i-1} \phi_{j+1}/\theta_n & \text{ if } i < j\\ \theta_{i-1} \phi_{j+1}/\theta_n & \text{ if } i = j\\ (-1)^{i+j}c_j \cdots c_{i-1} \theta_{j-1} \phi_{i+1}/\theta_n & \text{ if } i > j\\ \end{cases}</math> where the ''ΞΈ<sub>i</sub>'' satisfy the recurrence relation :<math>\theta_i = a_i \theta_{i-1} - b_{i-1}c_{i-1}\theta_{i-2} \qquad i=2,3,\ldots,n</math> with initial conditions ''ΞΈ''<sub>0</sub> = 1, ''ΞΈ''<sub>1</sub> = ''a''<sub>1</sub> and the ''Ο''<sub>''i''</sub> satisfy :<math>\phi_i = a_i \phi_{i+1} - b_i c_i \phi_{i+2} \qquad i=n-1,\ldots,1</math> with initial conditions ''Ο''<sub>''n''+1</sub> = 1 and ''Ο''<sub>''n''</sub> = ''a<sub>n</sub>''.<ref>{{Cite journal | last1 = Da Fonseca | first1 = C. M. | doi = 10.1016/j.cam.2005.08.047 | title = On the eigenvalues of some tridiagonal matrices | journal = Journal of Computational and Applied Mathematics | volume = 200 | pages = 283β286 | year = 2007 | doi-access = free }}</ref><ref>{{Cite journal | last1 = Usmani | first1 = R. A. | doi = 10.1016/0024-3795(94)90414-6 | title = Inversion of a tridiagonal jacobi matrix | journal = Linear Algebra and Its Applications | volume = 212-213 | pages = 413β414 | year = 1994 | doi-access = free }}</ref> Closed form solutions can be computed for special cases such as [[symmetric matrix|symmetric matrices]] with all diagonal and off-diagonal elements equal<ref>{{Cite journal | last1 = Hu | first1 = G. Y. | last2 = O'Connell | first2 = R. F. | doi = 10.1088/0305-4470/29/7/020 | title = Analytical inversion of symmetric tridiagonal matrices | journal = Journal of Physics A: Mathematical and General | volume = 29 | issue = 7 | pages = 1511 | year = 1996 | bibcode = 1996JPhA...29.1511H }}</ref> or [[Toeplitz matrices]]<ref>{{Cite journal | last1 = Huang | first1 = Y. | last2 = McColl | first2 = W. F. | doi = 10.1088/0305-4470/30/22/026 | title = Analytical inversion of general tridiagonal matrices | journal = Journal of Physics A: Mathematical and General | volume = 30 | issue = 22 | pages = 7919 | year = 1997 | bibcode = 1997JPhA...30.7919H }}</ref> and for the general case as well.<ref>{{Cite journal | last1 = Mallik | first1 = R. K. | doi = 10.1016/S0024-3795(00)00262-7 | title = The inverse of a tridiagonal matrix | journal = Linear Algebra and Its Applications | volume = 325 | pages = 109β139 | year = 2001 | issue = 1β3 | doi-access = free }}</ref><ref>{{Cite journal | last1 = KΔ±lΔ±Γ§ | first1 = E. | doi = 10.1016/j.amc.2007.07.046 | title = Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions | journal = Applied Mathematics and Computation | volume = 197 | pages = 345β357 | year = 2008 }}</ref> In general, the inverse of a tridiagonal matrix is a [[semiseparable matrix]] and vice versa.<ref name="VandebrilBarel2008">{{cite book|author1=Raf Vandebril|author2=Marc Van Barel|author3=Nicola Mastronardi|title=Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems|year=2008|publisher=JHU Press|isbn=978-0-8018-8714-7|at=Theorem 1.38, p. 41}}</ref> The inverse of a symmetric tridiagonal matrix can be written as a [[single-pair matrix]] (a.k.a. ''generator-representable semiseparable matrix'') of the form<ref name="Meurant1992">{{cite journal |last1=Meurant |first1=Gerard |title=A review on the inverse of symmetric tridiagonal and block tridiagonal matrices |journal=SIAM Journal on Matrix Analysis and Applications |date=1992 |volume=13 |issue=3 |pages=707β728 |doi=10.1137/0613045 |url=https://doi.org/10.1137/0613045|url-access=subscription }}</ref><ref>{{cite journal |last1=Bossu |first1=Sebastien |title=Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices |journal=Linear Algebra and Its Applications |date=2024 |volume=699 |pages=129β158 |doi=10.1016/j.laa.2024.06.018 |url=https://authors.elsevier.com/a/1jOTP5YnCtZEc|arxiv=2304.06100 }}</ref> <math>\begin{pmatrix} \alpha_1 & -\beta_1 \\ -\beta_1 & \alpha_2 & -\beta_2 \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -\beta_{n-1} \\ & & & -\beta_{n-1} & \alpha_n \end{pmatrix}^{-1} = \begin{pmatrix} a_1 b_1 & a_1 b_2 & \cdots & a_1 b_n \\ a_1 b_2 & a_2 b_2 & \cdots & a_2 b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 b_n & a_2 b_n & \cdots & a_n b_n \end{pmatrix} = \left( a_{\min(i,j)} b_{\max(i,j)} \right) </math> where <math>\begin{cases} \displaystyle a_i = \frac{\beta_{i} \cdots \beta_{n-1}}{\delta_i \cdots \delta_n\,b_n} \\ \displaystyle b_i = \frac{\beta_1 \cdots \beta_{i-1}}{d_1 \cdots d_i}\end{cases}</math> with <math>\begin{cases} d_n = \alpha_n,\quad d_{i-1} = \alpha_{i-1} - \frac{\beta_{i-1}^2}{d_{i}}, & i = n, n-1, \cdots, 2, \\ \delta_1 = \alpha_1, \quad \delta_{i+1} = \alpha_{i+1} - \frac{\beta_{i}^2}{\delta_{i}}, & i = 1, 2, \cdots, n-1. \end{cases} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)