Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tuple
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== There are several definitions of tuples that give them the properties described in the previous section. ===Tuples as functions=== The <math>0</math>-tuple may be identified as the [[Function (mathematics)#General properties|empty function]]. For <math>n \geq 1,</math> the <math>n</math>-tuple <math>\left(a_1, \ldots, a_n\right)</math> may be identified with the ([[Surjective function|surjective]]) [[Function (mathematics)#Definition|function]] :<math>F ~:~ \left\{ 1, \ldots, n \right\} ~\to~ \left\{ a_1, \ldots, a_n \right\}</math> with [[Domain of a function|domain]] :<math>\operatorname{domain} F = \left\{ 1, \ldots, n \right\} = \left\{ i \in \N : 1 \leq i \leq n\right\}</math> and with [[codomain]] :<math>\operatorname{codomain} F = \left\{ a_1, \ldots, a_n \right\},</math> that is defined at <math>i \in \operatorname{domain} F = \left\{ 1, \ldots, n \right\}</math> by :<math>F(i) := a_i.</math> That is, <math>F</math> is the function defined by :<math>\begin{alignat}{3} 1 \;&\mapsto&&\; a_1 \\ \;&\;\;\vdots&&\; \\ n \;&\mapsto&&\; a_n \\ \end{alignat}</math> in which case the equality :<math>\left(a_1, a_2, \dots, a_n\right) = \left(F(1), F(2), \dots, F(n)\right)</math> necessarily holds. ;Tuples as sets of ordered pairs Functions are commonly identified with their [[Graph of a function|graphs]], which is a certain set of ordered pairs. Indeed, many authors use graphs as the definition of a function. Using this definition of "function", the above function <math>F</math> can be defined as: :<math>F ~:=~ \left\{ \left(1, a_1\right), \ldots, \left(n, a_n\right) \right\}.</math> ===Tuples as nested ordered pairs=== Another way of modeling tuples in set theory is as nested [[ordered pair]]s. This approach assumes that the notion of ordered pair has already been defined. # The 0-tuple (i.e. the empty tuple) is represented by the empty set <math>\emptyset</math>. # An {{math|''n''}}-tuple, with {{math|''n'' > 0}}, can be defined as an ordered pair of its first entry and an {{math|(''n'' β 1)}}-tuple (which contains the remaining entries when {{math|''n'' > 1)}}: #: <math>(a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, a_3, \ldots, a_n))</math> This definition can be applied recursively to the {{math|(''n'' β 1)}}-tuple: : <math>(a_1, a_2, a_3, \ldots, a_n) = (a_1, (a_2, (a_3, (\ldots, (a_n, \emptyset)\ldots))))</math> Thus, for example: : <math> \begin{align} (1, 2, 3) & = (1, (2, (3, \emptyset))) \\ (1, 2, 3, 4) & = (1, (2, (3, (4, \emptyset)))) \\ \end{align} </math> A variant of this definition starts "peeling off" elements from the other end: # The 0-tuple is the empty set <math>\emptyset</math>. # For {{math|''n'' > 0}}: #: <math>(a_1, a_2, a_3, \ldots, a_n) = ((a_1, a_2, a_3, \ldots, a_{n-1}), a_n)</math> This definition can be applied recursively: : <math>(a_1, a_2, a_3, \ldots, a_n) = ((\ldots(((\emptyset, a_1), a_2), a_3), \ldots), a_n)</math> Thus, for example: : <math> \begin{align} (1, 2, 3) & = (((\emptyset, 1), 2), 3) \\ (1, 2, 3, 4) & = ((((\emptyset, 1), 2), 3), 4) \\ \end{align} </math> ===Tuples as nested sets=== Using [[ordered pair#Kuratowski's definition|Kuratowski's representation for an ordered pair]], the second definition above can be reformulated in terms of pure [[set theory]]: # The 0-tuple (i.e. the empty tuple) is represented by the empty set <math>\emptyset</math>; # Let <math>x</math> be an {{math|''n''}}-tuple <math>(a_1, a_2, \ldots, a_n)</math>, and let <math>x \rightarrow b \equiv (a_1, a_2, \ldots, a_n, b)</math>. Then, <math>x \rightarrow b \equiv \{\{x\}, \{x, b\}\}</math>. (The right arrow, <math>\rightarrow</math>, could be read as "adjoined with".) In this formulation: : <math> \begin{array}{lclcl} () & & &=& \emptyset \\ & & & & \\ (1) &=& () \rightarrow 1 &=& \{\{()\},\{(),1\}\} \\ & & &=& \{\{\emptyset\},\{\emptyset,1\}\} \\ & & & & \\ (1,2) &=& (1) \rightarrow 2 &=& \{\{(1)\},\{(1),2\}\} \\ & & &=& \{\{\{\{\emptyset\},\{\emptyset,1\}\}\}, \\ & & & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\} \\ & & & & \\ (1,2,3) &=& (1,2) \rightarrow 3 &=& \{\{(1,2)\},\{(1,2),3\}\} \\ & & &=& \{\{\{\{\{\{\emptyset\},\{\emptyset,1\}\}\}, \\ & & & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\}\}, \\ & & & & \{\{\{\{\{\emptyset\},\{\emptyset,1\}\}\}, \\ & & & & \{\{\{\emptyset\},\{\emptyset,1\}\},2\}\},3\}\} \\ \end{array} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)